News

Libor Juha joins the EPJ Scientific Advisory Committee (SAC)

Libor Juha

The Scientific Advisory Committee of EPJ is delighted to welcome Dr. Libor Juha as the new representative for the Czech Physical Society.

Libor Juha obtained his Ph.D. degree at the Faculty of Nuclear Sciences and Engineering Physics of the Czech Technical University in Prague in June 1995. He is the head of the Department of Radiation and Chemical Physics of the Institute of Physics of the Czech Academy of Sciences and the scientific director of the PALS (Prague Asterix Laser System) Research Centre, the joint laboratory between the Institute of Physics and the Institute of Plasma Physics of the Czech Academy of Sciences. He performs experimental investigations of various phenomena occurring on the border between the high-energy-density physics and the high-energy chemistry. His main current research activities are associated with a characterization and applications of XUV/x-ray lasers of various kinds. In addition to that, he is lecturing at the Faculty of Nuclear Sciences and Engineering Physics of the Czech Technical University in Prague and the Faculty of Mathematics and Physics of Charles University in Prague. He spent ten years (2008-2017) in the service to communities of Czech and Slovak physicists as the editor-in-chief of the Czecho-Slovak Journal of Physics - Československý časopis pro fyziku, one among several successors to the Journal for Cultivation of Mathematics and Physics - Časopis pro pěstování mathematiky a fysiky founded in Prague in 1872.

EPJ D Highlight - Looking for dark matter

A ‘clump’ of dark matter, shown approaching the Earth, causes tiny changes to fundamental constants and therefore to mass and acceleration when it passes through.

A new paper in EPJ D, ‘Constraining domain wall dark matter with a network of superconducting gravimeters and LIGO’, suggests two novel methods of searching for dark matter by measuring tiny perturbations in fundamental constants.

Dark matter, which cannot be physically observed with ordinary instruments, is thought to account for well over half the matter in the Universe, but its properties are still mysterious. One commonly held theory states that it exists as ‘clumps’ of extremely light particles. When the earth passes through such a clump, the fundamental properties of matter are altered in ways that can be detected if instruments are sensitive enough. Physicists Rees McNally and Tanya Zelevinsky from Columbia University, New York, USA, have now published a paper in EPJ D proposing two new methods of looking for such perturbations and, thus, dark matter. This paper is part of the EPJD Topical Issue on Quantum Technologies for Gravitational Physics which is still open to submissions.

Read more...

EPJ C - New Deputy Editor-in-Chief for Theoretical Physics II

alt
Dominik Schwarz

The publishers of The European Physical Journal C - Particles and Fields (EPJ C) are pleased to announce the appointment of Professor Dominik Schwarz as Deputy Editor-in-Chief for Theoretical Physics II: Gravitation, Astroparticle Physics and Cosmology, General Aspects of Quantum Field Theories, and Alternatives. He will relieve Professor Kostas Skenderis from submissions in the fields of astroparticle physics and cosmology, serving more and more as connecting elements between the phenomenology of the standard model and more elaborate mathematical theories including gravitation.

Dominik Schwarz, head of the Astroparticle Physics and Cosmology Working Group at Bielefeld University, is an expert on the interface of particle physics with cosmology as well as the interface between modelling and observational cosmology. His research interests include cosmological inflation and the thermal history of the Universe, the cosmic microwave background and large scale structure, dark matter and dark energy.

EPJ Plus Highlight - Models explain changes in cooking meat

Moisture flows in cooking meat

By treating meat as a network of flexible polymers surrounded by flowing moisture, computer models can accurately predict how much it will shrink when cooked.

Meat is no ordinary solid. Made up of complex networks of moisture-saturated proteins, it displays some intriguing physical properties when it is cooked. Several studies in the past have attempted to recreate this behaviour in computer simulations, but because this demands so much computing power, they have only achieved simplified, one-dimensional recreations of the process, which aren’t particularly accurate. In new research published in EPJ Plus, mathematicians led by Dr Hala Nelson at James Madison University show that by modelling meat as a fluid-saturated matrix of elastic proteins, which are deformed as the fluid moves, cooking behaviours can be simulated more precisely.

Read more...

EPJ H – Appoints new Editors-in-Chief

alt

The European Physical Journal H – Historical Perspectives on Contemporary Physics (EPJ H) is pleased to announce the appointment of Professor James Wells and Dr. Michael Eckert as joint Editors-in-Chief as of 1 April 2020.

Read more...

EPJ D Topical review - Electron collisions with molecules and molecular clusters

Over the last ten years, advances in the computational investigation of electron collision processes have seen an overhaul of many of the software packages employed by researchers, in parallel with the development of new tools. In particular, the increased interest in biological molecules as targets has stimulated the development of software which makes use of current computational abilities. These developments have enabled scientists to study small targets with increasing levels of detail, larger targets than ever before, and the effect of the environment by means of the investigation of small molecular clusters.

Read more...

EPJ D Topical review - Electron-scattering on molecular hydrogen: convergent close-coupling approach

Molecular hydrogen is the simplest neutral molecule, the most abundant molecule in the universe and an important constituent of plasmas with applications in astrophysics, fusion, atmospheric physics, and various industries. Elemental collision processes play an important role in modelling these plasmas, and collisions with electrons have attracted significant interest from both experiment and theory. A number of compilations of cross sections for electron collisions with molecular hydrogen have been produced. In all cases these cross section data sets have been produced from an analysis of experimental data, even though there were significant discrepancies between different experiments for many transitions. Theoretical calculations have been largely excluded from critical evaluations of the data due to large uncertainties. This changed with the application of the convergent close-coupling (CCC) method to electron collisions with molecules.

Read more...

EPJ D Highlight - Frozen-planet states in exotic helium atoms

https://commons.wikimedia.org/wiki/ File:Just_your_average_backyard_ low_energy_anti-proton_ accelerator_(2280414954).jpg, Tom Purves, Toronto, Canada / CC BY (https://creativecommons. org/licenses/by/2.0)

In an elegant study published in EPJ D, physicists from Serbia and Russia have mapped the energy levels and estimated the stability of a ‘frozen planet’ configuration of anti-protonic helium.

Exotic subatomic particles that are like ‘normal’ particles apart from one, opposite, property - such as the positron, which is like an electron but positively rather than negatively charged - are collectively known as antimatter. Direct studies of collisions between particles of matter and those of antimatter using giant facilities such as those at CERN can advance our understanding of the nature of matter. A new study by Tasko Grozdanov from the University of Belgrade in Serbia and Evgeni Solov’ev from the Institute of Nuclear Research near Moscow in Russia has mapped the energy levels of an exotic form of helium produced in this way. This work, which is published in EPJ D, has been described by one commentator as ”... a new jewel in the treasure of scientific achievements in atomic physics theory”.

Read more...

Victoria Vitkova joins the EPJ Scientific Advisory Committee (SAC)

Victoria Vitkova

The Scientific Advisory Committee of EPJ is delighted to welcome Professor Victoria Vitkova as the new representative for the Bulgarian Physical Society. She is the head of the Soft Matter Department at the G. Nadjakov Institute of Solid State Physics – Bulgarian Academy of Sciences (ISSP-BAS). Graduated from Sofia University in Quantum Electronics and Laser Physics and in Biophysics and Radiobiology, she defended her PhD in the University of Rennes I, France. Her expertise lies in the field of soft matter physics, rheology of complex fluids and membrane biophysics.

EPJ E Highlight - Distortion isn’t a drag on fluid-straddling particles

Straddling particles deform fluid interfaces.

The drag forces experienced by particles which straddle and distort the interfaces between un-mixable fluids are less influenced by the shape of the distortion than previously thought.

Some intriguing physics can be found at the interfaces between fluids, particularly if they are straddled by particles like proteins or dust grains. When placed between un-mixable fluids such as oil and water, a variety of processes, including inter-molecular interactions, will cause the particles to move around. These motions are characterised by the drag force experienced by the particles, which is itself thought to depend on the extent to which they distort fluid interfaces. So far, however, experiments investigating the intriguing effect haven’t yet fully confirmed the influence of this distortion. In new research published in EPJ E, a team led by Jean-Christophe Loudet at the University of Bordeaux, France, showed that the drag force experienced by fluid-straddling particles is less affected by interface distortion than previously believed.

Read more...

Editors-in-Chief
Pere Roca i Cabarrocas and Daniel Lincot
ISSN: 2105-0716 (Electronic Edition)

© EDP Sciences