News

EPJ Plus Highlight - On the trail of the Higgs Boson

Post-LHC collision showing how the particles decay.

The elusive particle won't share all the secrets of its creation mechanism at once

For the physics community, the discovery of new particles like the Higgs Boson has paved the way for a host of exciting potential experiments. Yet, when it comes to such an elusive particle as the Higgs Boson, it's not easy to unlock the secrets of the mechanism that led to its creation. The experiments designed to detect the Higgs Boson involve colliding particles with sufficiently high energy head-on after accelerating them in the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. In a quest to understand the production mechanisms for the Higgs Boson, Silvia Biondi from the National Institute of Nuclear Physics, Bologna, Italy investigated the traces of a rare process, called ttH, in which the Higgs Boson is produced in association with a pair of elementary particles referred to as top quarks. Her findings can be found in a recent study published in EPJ Plus. Future LHC experiments are expected to yield even more precise measurements of the Higgs Boson's ability to couple with particles that physicists are already familiar with.

Read more...

EPJ A Highlight - The P2-Experiment - A future high-precision measurement of the weak mixing angle at low momentum transfer

alt
The experimental setup of the P2-experiment to measure the weak mixing angle at the new electron accelerator MESA in Mainz.

The P2-experiment at the new electron accelerator MESA in Mainz aims at a high-precision determination of the weak mixing angle at the permille level at low Q2. This accuracy is comparable to existing measurements at the Z-pole but allows for sensitive tests of the Standard Model up to a mass scale of 50 TeV. The weak mixing angle will be extracted from a measurement of the parity violating asymmetry in elastic electron-proton scattering. The asymmetry measured at P2 is smaller than any asymmetry measured so far in electron scattering, with an unprecedented accuracy. This review just published in EPJ A describes the underlying physics and the innovative experimental techniques, such as the Cherenkov detector, beam control, polarimetry, and the construction of a novel liquid hydrogen high-power target. The physics program of the MESA facility comprises indirect, high-precision search for physics beyond the Standard Model, measurement of the neutron distribution in nuclei, transverse single-spin asymmetries, and a possible future extension to the measurement of hadronic parity violation.

Read more...

EPJ Plus Focus Point on Modern Astronomy: Selected Issues in Nuclear and High Energy Astrophysics

Modern Astronomy is a multidisciplinary science that evolved widely with respect to old traditional and romantic discipline made at a telescope, observing stars and taking notes of their movements in the sky. Nowadays, high-resolution stellar spectra from gigantic reflectors like VLT, images of planets and distant galaxies made at infrared wavelengths where cool matter or redshifted objects are best seen, high-definition maps of galaxies and the cosmos provided by space-borne telescopes are invaluable sources of data. However, they give us only a partial vision of the universe, which, to be studied and understood, needs to be scrutinized not only in the electromagnetic spectrum but also through probes of different nature, such as high energy particles (cosmic rays) accelerated by Galactic mechanisms, neutrinos from nuclear processes and gravitational waves from space-time perturbations. In this much broader picture, "classical" astronomers, stellar physicists, experts of nucleosynthesis, nuclear and particle physicists and geochemists work together to study the universe and understand its formation and evolution. Since many experts in different fields are needed to undertake this arduous task, it is crucial that the training of young researchers be focused both on providing them with a general physical background, and on specializing them in some specific field among those mentioned.

This focus point aims to give the students and general readers an overview on the state of the art of modern research in stellar modelling and nucleosynthesis, in Gamma- and X-ray astronomy, in astro-particle physics, and in experimental low-energy nuclear astrophysics.

Read more...

EPJ B Colloquium - The strong disorder renormalization group (SDRG) method for random systems

Structure of connected clusters at the critical point of the 2D RTIM

The strong disorder renormalization group (SDRG) approach has been developed to study the low-energy excitations and spatial and temporal correlations of random systems. Since 2005 it has been extended in many new directions and beyond its initial scope. In this EPJ B Colloquium Ferenc Iglói and Cécile Monthus give an overview of the many recent developments.

Read more...

EPJ E Highlight - The physics of extracting gas from shale formations

Microscopic model of the shale structure.

A new study outlines the key parameters affecting the production of gas from shale reservoirs, by simulating what is happening at the microscopic scale.

Extracting gas from new sources is vital in order to supplement dwindling conventional supplies. Shale reservoirs host gas trapped in the pores of mudstone, which consists of a mixture of silt mineral particles ranging from 4 to 60 microns in size, and clay elements smaller than 4 microns. Surprisingly, the oil and gas industry still lacks a firm understanding of how the pore space and geological factors affect gas storage and its ability to flow in the shale. In a study published in EPJ E, Natalia Kovalchuk and Constantinos Hadjistassou from the University of Nicosia, Cyprus, review the current state of knowledge regarding flow processes occurring at scales ranging from the nano- to the microscopic during shale gas extraction. This knowledge can help to improve gas recovery and lower shale gas production costs.

Read more...

EPJ Plus article on Breast cancer: latest improvements in mammography selected for Springer Nature Grand Challenges Programme

A novel technique provides high performance in the analysis of mammographic images

Breast cancer is a disease predominantly affecting females and in the last decades the incidence rate rose. Nowadays, main risk factors, apart from genetic predisposition, include obesity, physical inactivity, hormone replacement therapy during menopause, and alcohol consumption. During the 1980s and 1990s, mammography screening has taken hold detecting many new cases. This technique takes advantage of low energy X-rays to examine breast tissues and early detect masses or microcalcifications, which are cancer’s ‘alarm bells’. Major issues in mammography concern the development of methods allowing a fast and clear interpretation of the collected screening images.

A group of scientists (B. Mughal et al.) reports on the European Physical Journal Plus (EPJ Plus) a new technique to improve the screening images reconstruction in order to achieve high accuracy.

Read more...

EPJ D Highlight - Fullerene compounds made simulation-ready

Color map of the pseudopotentials of C60.

New model helps understand compound nanomolecules made of football-shaped fullerenes

What in the smart nanomaterials world is widely available, highly symmetrical and inexpensive? Hollow carbon structures, shaped like a football, called fullerenes. Their applications range from artificial photosynthesis and nonlinear optics to the production of photoactive films and nanostructures. To make them even more flexible, fullerenes can be combined with added nanostructures. In a new study published in EPJ D, Kirill B. Agapev from ITMO University, St. Petersburg, Russia, and colleagues have developed a method that can be used for future simulations of fullerene complexes and thus help understand their characteristics.

Read more...

EPJ D Highlight - Doubly-excited electrons reach new energy states

Novel energy levels of electrons at resonance in positronium ions.

New energy states reached by electrons entering resonance in three-particle systems may open the door to using similar calculations in atomic and nuclear physics

Positrons are short-lived subatomic particle with the same mass as electrons and a positive charge. They are used in medicine, e.g. in positron emission tomography (PET), a diagnostic imaging method for metabolic disorders. Positrons also exist as negatively charged ions, called positronium ions (Ps-), which are essentially a three-particle system consisting of two electrons bound to a positron.

Now, commercially available lasers are capable of producing photons that carry enough energy to bring the electrons of negatively charge ions, like Ps−, to doubly-excited states, referred to as D-wave resonance. Positronium ions are, however, very difficult to observe because they are unstable and often disappear before physicists get a chance to analyse them.

Sabyasachi Kar from the Harbin Institute of Technology, China, and Yew Kam Ho from the Academia Sinica, Taipei, Taiwan, have now characterised these higher energy levels reached by electrons in resonance in these three-particle systems, which are too complex to be described using simple equations. This theoretical model, recently published in EPJ D, is intended to offer guidance for experimentalists interested in observing these resonant structures. This model of a three-particle system can be adapted to problems in atomic physics, nuclear physics, and semiconductor quantum dots, as well as antimatter physics and cosmology.

Read more...

EPJ Plus article on first steps towards microplastics regulation in Europe selected for Springer Nature Grand Challenges Programme

In modern times, assessing the impact of climate change on the vulnerability of radiological practices is necessary to implement risk management policies and secure facilities.

Scientific, political and socio-economic aspects of the dossier on plastic pollution solicited by the European Commission.

In November 2017, as part of the EU Plastics Strategy, the European Commission (EC) requested that the European Chemical Agency (ECHA) develop a dossier on microplastics' restriction under REACH. REACH is a EU chemical regulation adopted in 2006, and its aims are the protection of human health and the environment.

The requested restriction process concerns not only environmental and health risk assessments but is closely related to socio-economic impacts within the union. Therefore, several EU committees, such as the Risk Assessment Committee (RA) and the Committee for Socio-Economic Analysis (SEA) are involved in the examination of the preparatory study submitted by ECHA.

The whole restriction process is clearly described by E. Kentin in European Physical Journal Plus (EPJ Plus).

Read more...

EPJ E Highlight - Pore size alone does not matter when biological nanopores act as sugar chain biosensors

Setup recording how sugar chains pass through a funnel-shaped nanopore.

The effectiveness of nanopore biosensors capable of identifying sugar chains from biological molecules involved in key biological processes also depends on the nanopore's electrical charge and inner pore design

Protein nanopores are present in cell membranes and act as biological gateways. This means that they can also be used for the detection of specific bioactive molecular chains, like sugar chains, such as molecules from the glycosaminoglycan family. The latter are responsible for key interactions at the cellular level. They typically mediate interactions with cell surfaces or with proteins, resulting in the activiation of physiological and pathological effects in embryonic development, cell growth and differentiation, inflammatory response, tumour growth and microbial infection. The use of such nanopores as biosensors requires to fully understand the intricate mechanisms occurring as sugar chains pass through them. In a new study published in EPJ E, Aziz Fennouri from Paris-Saclay University in Evry, France, and colleagues outline the key criteria determining the effectiveness of two types of nanopores in the detection of sugar chains.

Read more...

Editors-in-Chief
Pere Roca i Cabarrocas and Daniel Lincot
ISSN: 2105-0716 (Electronic Edition)

© EDP Sciences