EPJ Plus Focus Point on Advances in Photonics for Heritage Science: Developments, Applications and Case Studies

Guest Editors: Daniela Comelli, Austin Nevin & Gianluca Valentini

Photonics is the science of light and is considered one of the key enabling technologies for innovation in all industries. New photonic applications are emerging in various fields, such as environmental monitoring and medicine. The same technological innovation is being adopted in the field of heritage science, where photonics is the foundation for the application of a range of non-invasive, non-contact, and often portable devices for studying works of art and artistic materials.

In this Focus Point on “Advances in Photonics for Heritage Science: Developments, Applications and Case Studies”, the guest editors have selected seventeen papers that present a range of optical and photonics-based techniques, highlighting their advantages and limitations, as well as current and future applications to study our heritage.

Read more...

EPJ Plus Highlight - How advanced optical tweezers revolutionized cell manipulation

A ‘tug of war’ set of optical tweezers — separated beams of light that can trap bacterium. Credit: Hu. S., et al, [2022]

A new review looks at devices called optical tweezers and how they are used to better uncover the natural secrets of human life at the single-cell level.

Optical tweezers (OTs), also known as optical traps, are highly focused laser beams that can be used to trap and manipulate microscopic objects with a noncontact force. Employed in a wide range of nano and micro-scale operations, OTs have become particularly useful in the manipulation of biological objects including human cells.

A new review published in EPJ Plus conveys the latest achievements in OTs over recent decades. The review is authored by researchers from the College of Information Science and Engineering, Northeastern University, Shenyang, China — Sheng Hu, Jun-yan Ye, Yong Zhao and Cheng-Liang Zhu .

Read more...

EPJ Plus Highlight - Modelling the use of Beta Radiation in cancer treatment

An illustration of beta decay proceeding against the backdrop of a Monte Carlo simulation. Credit: Robert Lea

New research pits the simulation of beta radiation doses in tumour treatment against an analytical method.

Treating superficial skin tumours especially when they are located above cartilage or bone with beta radiation can help protect sensitive structures during the delivery of treatment.

The use of short-range beta radiation in cancer treatment is not without its disadvantages, however, especially when it comes to the measurement of radiation exposure — dosimetry. When experimental dosimetry is not feasible, researchers use simulations and calculations to study the interaction of the ionizing radiation with matter and estimate the radiation dose delivered to a target organ.

A new paper published in EPJ Plus and authored by Eduardo De Paiva, from the Division of Medical Physics at the Institute of Radiation Protection and Dosimetry, Rio de Janeiro, Brazil, and his colleagues, pits the gold standard of simulation techniques — Monte Carlo (MC) simulation — against an alternative analytic method, the Loevinger formula.

Read more...

EPJ Plus Highlight - Exotic carbon microcrystals in meteorite dust

Images of carbon microcrystals taken with (a)) optical and (b)-d)) scanning electron microscopes.

Unusually shaped microcrystals formed of pure, graphite-like carbon were discovered in the dust of the 21st-century’s largest meteorite. They are likely to have grown in layers from complex carbon nuclei such as fullerene.

The largest meteorite observed so far this century entered the Earth’s atmosphere above Chelyabinsk in the Southern Urals, Russia on February 15, 2013. Unusually, dust from the surface of this meteorite survived its fall and is being extensively studied. This dust includes some unusually shaped microcrystals of carbon. A study of the morphology and simulations of the formation of these crystals by a consortium led by Sergey Taskaev and Vladimir Khovaylo from Chelyabinsk State University, Russia is now published in the journal EPJ Plus.

Read more...

EPJ Plus Highlight - Probing high-energy neutrinos with an IceCube

The IceCube neutrino telescope at the South Pole. Copyright: Stephen Richter, 2015. CC BY-NC-SA 3.0.

Studying a high-energy neutrino that was observed by the IceCube Neutrino Observatory at the South Pole and that is believed to be intergalactic in origin has yielded some intriguing ‘new physics’ beyond the Standard Model

The subatomic particles called neutrinos, are believed to be ubiquitous throughout the Universe but are very difficult to detect. Now, Moroccan astrophysicist Salah Eddine Ennadifi and his co-workers, published a paper in EPJ Plus that describes the first known observation of intergalactic, high-energy neutrinos and probes new neutrino-related physics beyond the Standard Model of Particle Physics.

Read more...

EPJ Plus Highlight - Assessing the impact of loss mechanisms in solar cell candidate

Diagrams chart the impact of interface recombination and absorber minority carrier lifetime on efficiency and open-circuit voltage of a solar cell.

The superconductor antimony sulfide selenide is a potential candidate for solar materials, but this depends on understanding how to boost its efficiency.

As climate change continues to present itself as the most pressing threat facing our planet, researchers push to find efficient and clean alternatives to fossil fuels. Foremost among this research is harnessing free energy from the sun. Doing this efficiently requires advanced knowledge of the qualities of materials used in the construction of solar cells.

In a new paper published in EPJ Plus, Maykel Courel from the Centro Universitario de los Valles (CUValles), Universidad de Guadalajara, Mexico, and co-authors, look at the limitations of the material antimony sulfide selenide, which has emerged as a potential candidate for solar cell fabrication.

Read more...

EPJ Plus Highlight - Characterising limestone rocks with Raman spectroscopy

Image by PublicDomainPictures from Pixabay

Research published in EPJ Plus shows that it is possible to classify rocks according to the size of the particles they contain during quarrying, using a portable Raman spectrometer.

The nature and potential uses of a sedimentary rock depends on the size of the particles or grains that they are composed from, and particle sizing is an important part of rock classification. A group of researchers led by Iacopo Osticioli of Istituto di Fisica Applicata “N. Carrara”, Florence, Italy has shown that it is possible to size particles and identify rock samples rapidly and accurately while they are being quarried using a portable Raman spectrometer. This work has now been published in the journal EPJ Plus.

Read more...

EPJ Plus Highlight - Searching for dark matter with a haloscope

An artist’s impression of the haloscope, ready for testing at a temperature close to absolute zero. Credit: Nicolò Crescini

A new paper in EPJ Plus introduces a novel method of searching for a type of dark matter known as axions; a modified version of this technique may have useful ‘real life’ applications.

Most of the universe is now thought to consist of dark matter: mysterious substances which, because they don’t interact with light or any other kind of electromagnetic radiation, are almost impossible to detect. Physicists have been searching for it for decades, using different techniques; Nicolò Crescini, now of Institut Néel, Grenoble, France, developed a novel method of searching for one type of dark matter, axions, when working at the Laboratori Nazionali di Legnaro, Padova, Italy. This work has now been published in the journal EPJ Plus.

Read more...

EPJ Plus Highlight - Tackling large data sets and many parameter problems in particle physics

The Pandemonium tool links together six clusters of data and provides a graphical interpretation.

A new tool to break down and segment large data set problems and problems with many parameters in particle physics could have a wide range of applications.

One of the major challenges in particle physics is how to interpret large data sets that consist of many different observables in the context of models with different parameters.

A new paper published in EPJ Plus, authored by Ursula Laa from the Institute of Statistics at BOKU University, Vienna, and German Valencia from the School of Physics and Astronomy, Monash University, Clayton, Australia, looks at the simplification of large data set and many parameter problems using tools to split large parameter spaces into a small number of regions.

Read more...

EPJ Plus Focus Point on Rewriting Nuclear Physics Textbooks: Recent Advances in Nuclear Physics Applications

Guest Editors: Nicolas Alamanos, Carlos Bertulani, Angela Bonaccorso, Angela Bracco, David M. Brink, Giovanni Casini, Maria Agnese Ciocci, Valeria Rosso & Michele Viviani

This collection of articles contains some of the lectures presented at the Summer School ``Re-writing Nuclear Physics textbooks: recent advances in nuclear physics applications" which was held at the INFN Sezione di Pisa and Department of Physics of the University of Pisa in July 2019. The School followed two previous editions dedicated to "30 years with Radioactive Ion Beam Physics" and "Basic Nuclear Interactions and Their Link to Nuclear Processes in the Cosmos and on Earth" also held at the same place in July 2015 and 2017 respectively.

Read more...

Editors-in-Chief
Pere Roca i Cabarrocas
and Jean-Louis Lazzari
ISSN: 2105-0716 (Electronic Edition)

© EDP Sciences