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Abstract. Link prediction plays an important role in network reconstruction and network evolution. The
network structure affects the accuracy of link prediction, which is an interesting problem. In this paper we
use common neighbors and the Gini coefficient to reveal the relation between them, which can provide a
good reference for the choice of a suitable link prediction algorithm according to the network structure.
Moreover, the statistical analysis reveals correlation between the common neighbors index, Gini coefficient
index and other indices to describe the network structure, such as Laplacian eigenvalues, clustering coef-
ficient, degree heterogeneity, and assortativity of network. Furthermore, a new method to predict missing
links is proposed. The experimental results show that the proposed algorithm yields better prediction
accuracy and robustness to the network structure than existing currently used methods for a variety of
real-world networks.

1 Introduction

Many real-world complex systems in nature and society
can be described by complex networks, where a node in
the network represents an individual or element, and a
link is set when two nodes have interactions or reactions.
To study network functions and network structures can
help to understand the mechanism of complex systems [1].
Thus network analysis has attracted considerable atten-
tion from researchers of different scientific fields. As an im-
portant branch of network analysis, link prediction plays
an important role in finding missing data and network
reconstruction, predicting the evolution of networks [2–4]
and understanding the network functions [5–9]. Protein
interaction experiments show that there are huge amount
of inaccurate data [5], and our knowledge about real in-
teractions is very limited [6,10,11]. Of course, the appli-
cations of link prediction are not limited to the above
mentioned items. It can also be applied to recommend
system [12,13], and predict future conflict and individual
preferences [14,15].

The main work of link prediction is to estimate the
likelihood of the existence of a link between two nodes
based on current links and interactions in a network [16].
The between pairs of nodes with high scores of likelihood
are often regarded as evidence for existence of missing
links. There are some link prediction methods based on
the topological structure of a network, which take into
account the number of common neighbors of two end-
points of a link, since two individuals which have more
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common friends are more likely to become friends [16].
Although these methods are simple and successful in deal-
ing with specific networks, they are affected by network
structure [17]. Moreover, it is reported that different meth-
ods may lead to networks that have different topological
properties [10]. Thus to study how the network structure
affects the accuracy of a link prediction method, or how to
choose a suitable link prediction method, is an interesting
problem according to some indices which can describe net-
work structure. Currently, there is little literature on this
subject.

The performances of many current link prediction
methods are quite strongly dependent on the common
neighbors and local paths [18]. The current indices to
describe network structure, such as Laplacian eigenval-
ues [19], assortativity of network [20], degree heterogene-
ity [21] and clustering coefficient [1], can reveal small-
world property [22] or clusters. But they pay less attention
to strength of between pairs of nodes with common neigh-
bors, and so they cannot provide a good reference for the
choice of link prediction methods. On the other hand, a
degree distribution function p(k) can reveal the power-law
degree distribution of scale-free networks [23], but link pre-
diction is much more related to the size of degree of each
node, that is, the fluctuation of degree sequence.

In this paper, we use common neighbors and the Gini
coefficient to reveal how network structure affects the
accuracy of link prediction, which can provide a good
reference for the choice of a suitable algorithm of link
prediction according to network structure. The statisti-
cal analysis shows high correlations between the common

http://www.epj.org
https://doi.org/10.1140/epjb/e2017-70599-4


Page 2 of 8 Eur. Phys. J. B (2017) 90: 157

neighbors index, Gini coefficient index and other indices
to describe network structure, such as Laplacian eigenval-
ues, clustering coefficient, degree heterogeneity and assor-
tativity of network. Furthermore a new method to predict
missing links is proposed. The experimental results show
that the proposed algorithm yields better prediction ac-
curacy and robustness to the network structure than ex-
isting currently used methods for a variety of real-world
networks.

2 Analytical results

2.1 Real-world network datasets

Consider an unweighted and undirected network G =
(V, E) with node set V = {v1, v2, . . . , vN} and the ob-
served link set E, where the size of E is m. The self-
loops and multiple links are not allowed. The following
test datasets conform to this definition. Naturally, more
test samples are needed to obtain better accuracy for
statistical analysis. The datasets of real-world networks
used in this paper include (i) KA (Karate) – this is an
interaction network of members of a university Karate
club [24]; (ii) PI1 (Protein-structure-1) – this is a net-
work of protein structure [25]; (iii) DP (Dolphins) – this
is an animal relationship network with bottlenose dol-
phins [26]; (iv) SO (Social) – this is a social network
of positive sentiment [25]; (v) MO (Movie) – this is a
co-appearance network of characters in Hugo’s novel Les
Miserables [27]; (vi) PI2 (Protein-structure-2) – this is a
protein-protein interactions network [25]; (vii) PK (Pol-
book) – this is a network of books about US politics
(http://www.orgnet.com); (viii) WO (Word) – the data
is a network of common adjective and noun adjacencies,
as described by Newman [28]; (ix) FB (Football) – a net-
work of American football games [29]; (x) JZ (Jazz) –
this is a network related to jazz musicians [30]; (xi) NU
(Nerve) – this data represents the neural network of
C. elegans [22]. The original network is a directed and
weighted network. We treat it as an undirected and un-
weighted one; (xii) US (USAir) – a network of US air
transportation systems (http://vlado.fmf.uni-lj.si/
pub/networks/data/default.html); (xiii) CEL (C. ele-
gans) – this is a list of edges of the metabolic network
of C. elegans [31]. The original self-looping network is
treated as one without self-loops; (xiv) CIR (Circuit) –
Electronic circuit ISCAS89 can be viewed as a network
in which nodes are electronic components and connec-
tions are wires [25]; (xv) YEA (Yeast) – this is a net-
work of gene interactions [32]; (xvi) EM (Email) – this
is a network of e-mail interchanges between members of
the University Rovira i Virgil [33]; (xvii) PB (Polblogs) –
a directed network of hyperlinks between weblogs on US
politics [34]. Here it is treated as an undirected one; (xviii)
PW (Power) – this network represents the topology of the
Western States Power Grid of the United States [22]. In
Table 1 the parameters of test datasets are listed.

2.2 Correlation between indices

The adjacency matrix A = (aij) of a network G is an
N × N matrix, where aij = 1 if the pair of nodes
(i, j) is connected by a link in G, otherwise aij = 0.
ki =

∑

j

aij is the degree of node i in a network, and

D = diag{k1, k2, . . . , kN} is the degree diagonal matrix.
The Laplacian matrix L is given by L = D − A. We set
0 = μ1 ≤ μ2 ≤ · · · ≤ μN as the eigenvalues of L [19]. In
this paper a link e = (i, j) is called as a link with common
neighbors if node i, j have at least one common neighbor.
Γ (i) denotes the set of neighbors of node i. The first in-
dex used to describe the strength of links with common
neighbors is cn, which is defined as the fraction of these
links between pairs of nodes with common neighbors in
link set E,

cn =

∑

i<j

aijδij

m
, (1)

where δij = 1 if Γ (i) ∩ Γ (j) �= ∅, 0 otherwise. 0 ≤ cn ≤ 1,
and 0 means that there is no triangle in a network, and 1
means that each link is contained in at least a triangle.

cn also provides a new method for network decom-
position. A network G is classified into two categories
Gc = {Gc

1, G
c
2, . . . , G

c
t} and Gn = {Gn

1 , Gn
2 , . . . , Gn

l },
where each link is contained in at least a triangle in each
component Gc

i , and not any triangle in Gn
j . G = Gc ∪Gn.

The corresponding decompositions of the adjacency ma-

trix and Laplacian matrix are A =
t∑

i=1

Ac
i +

l∑

j=1

An
j and

L =
t∑

i=1

Lc
i +

l∑

j=1

Ln
j , where ac

ij = aij if Γ (i) ∩ Γ (j) �= ∅,
0 otherwise. an

ij = aij if Γ (i) ∩ Γ (j) = ∅, 0 otherwise
(i, j = 1, 2, . . . , N).

The local clustering coefficient c(i) of node i is defined
as the probability that two distinct neighbors of i are con-
nected. The clustering coefficient c of a network is the
average of all nodes [1];

c(i) =
2|Ei|

ki(ki − 1)
, (2)

where |Ei| denotes the number of links that actually exist
between these ki nodes, and c(i) = 0 if ki = 0, 1;

c =

∑

i∈V

c(i)

N
. (3)

Although cn and c both pay attention to the common
neighbors, the index cn is different from the clustering
coefficient c. The clustering coefficient measures the ten-
dency for nodes to form closely connected clusters. cn

pays more attention to the strength of links with common
neighbors in a network. cn and c have high positive cor-
relation, where the Pearson correlation coefficient (CC)
between cn and c is 0.803 for real-world network datasets
(see Fig. 1a, Tab. 2). In fact, this phenomenon can be ex-
plained according to the number of triangles. If two dis-
tinct neighbors j, k of node i are connected, that is a tri-
angle i → j → k → i, then (i, j), (j, k), (k, i) are the links

http://www.epj.org
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Table 1. Test datasets of real-world networks. N – the number of nodes, m – the number of links, 〈k〉 – the average degree.

Network N m 〈k〉 Network N m 〈k〉 Network N m 〈k〉
KA 34 78 4.588 PK 105 441 8.400 CEL 453 2025 8.940
PI1 53 123 4.642 WO 112 425 7.589 CIR 512 819 3.199
DP 62 159 5.129 FB 115 613 10.661 YEA 688 1078 3.134
SO 67 142 4.239 JZ 198 2742 27.697 EM 1133 5451 9.622
MO 77 254 6.597 NU 297 2148 14.465 PB 1490 16 715 22.436
PI2 95 213 4.484 US 332 2126 12.807 PW 4941 6594 2.669

with common neighbors. Thus if there are more triangles
in the network with high clustering coefficient, then the
probability of links possessing common neighbors is also
high (high cn). Similarly, if there is high cn in the net-
work, then there are more links with common neighbors,
i.e., there are more triangles. So cn is high in small-world
networks, but some biological networks and technologi-
cal networks indicate low cn, such as CIR, YEA and PW
networks in Figure 1a. Thus to some extent cn also re-
veals the small-world property of real-world networks. The
most remarkable feature is that the accuracies of most link
prediction methods based on the common neighbors have
higher correlation with cn than c (see Fig. 2 in Methods
and experiments section).

The second index to describe the properties of the net-
work structure is the Gini coefficient based on the Lorenz
curve. The Gini coefficient was proposed by Hirschman,
and was used to measure inequality among the values of a
frequency distribution (such as income distribution). An
alternate expression of the Gini coefficient can be written
as [35]:

g =
2

N∑

i=1

ixi

N
N∑

i=1

xi

− N + 1
N

, (4)

where for a distribution on the values xi, i = 1 to N ,
indexed in non-decreasing order (xi ≤ xi+1). The Gini
coefficient can also be apply to measure the inequality of
degree sequence and Laplacian eigenvalues sequence of a
network. Let k1 ≤ k2 ≤ · · · ≤ kN and μ1 ≤ μ2 ≤ · · · ≤
μN . Since

N∑

i=1

ki =
N∑

i=1

μi = 2m, the Gini coefficient gd of

degree sequence and gμ of Laplacian eigenvalues sequence
are defined as:

gd =

N∑

i=1

iki − (N + 1)m

Nm
, (5)

gμ =

N∑

i=1

iμi − (N + 1)m

Nm
, (6)

which reveal the uneven extent of a sequence distribution.
The Gini coefficient ranges from 0 to 1, where 0 means
perfect equality and 1 complete inequality.

gd and gμ have high positive correlation (see Fig. 1e,
Tab. 2, CC = 0.965), where only the top-15 real-world
networks are tested since with increasing of N it becomes

more time-consuming to compute all eigenvalues of ma-
trix L. Below, we prove the property that gμ is no less
than gd, which shows that the uneven degree sequence
means the uneven Laplacian eigenvalues sequence.

Property: gμ ≥ gd (For an undirected and unweighted
network G, the uneven degree sequence means the uneven
Laplacian eigenvalues sequence).

Proof : It is sufficient to prove that:

N∑

i=1

iμi ≥
N∑

i=1

iki, (7)

according to the definition of gμ, gd. Since:

N∑

i=1

iμi =
N∑

j=1

N∑

i=j

μi. (8)

By the following Schur inequality [36],

N∑

i=t

μi ≥
N∑

i=t

ki, t = 1, 2, . . . , N. (9)

We complete the proof.
We found that there is correlation between gd, gμ and

current parameters to describe network properties. Table 2
gives the correlated extent of various parameters calcu-
lated from the Pearson correlation coefficient. Barabási
and Albert found that in many real-world networks there
are a small amount of nodes with large degree, and most
nodes have few links, that is, the power-law degree dis-
tribution p(k) ∝ k−β. The holds for the internet network,
protein interaction network, metabolic network and so on.
These are called scale-free networks [37]. These nodes with
large degree are called rich nodes. Rich nodes are inter-
connected with high probability to form a so-called rich-
club [38]. Besides the degree distribution function p(k),
the degree heterogeneity H = 〈k2〉

〈k〉2 [21] is used to describe
the scale-free network. For a scale network or rich-club
network, there is a high H and uneven degree distribu-
tion. Thus the gd is high for such networks. There must
be high positive correlation between gd and H . The testing
in real-world network datasets in Figure 1b supports our
finding, and in Table 2 the Pearson correlation coefficient
between gd and H is 0.812.

The assortativity of network r is also called assortative
mixing, which denotes the tendency of network nodes to
joint other nodes preferentially with opposite or similar

http://www.epj.org
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Fig. 1. The results of various parameters in real-world networks. c – clustering coefficient, r – assortativity coefficient, H = 〈k2〉
〈k〉2 –

degree heterogeneity. λc = 〈k〉
〈k2〉 – spreading threshold. (a) The correlation between cn and c. (b) The correlation between gd

and H . (c) The correlation between gd and r. (d) The correlation between r and H . (e) The correlation between gd and gμ. (f)
The correlation between gd and λc.

Table 2. The Pearson correlation coefficient (CC) between
parameters.

cn c gd H gd r r H gd gμ gd λc

CC 0.803 0.812 –0.661 –0.622 0.965 –0.623

properties. If the nodes with large degree tend to be con-
nected with the nodes with large degree, the network
has positive correlation; if the nodes with large degree
and small degree nodes are connected, the network has
negative correlation. The expression of r is proposed by
Newman [20] as:

r =
SeS1 − S2

2

S3S1 − S2
2

, (10)

where S1 =
∑

i

ki = 2m, S2 =
∑

i

k2
i , S3 =

∑

i

k3
i , Se =

2
∑

i<j

aijkikj .

The statistical analysis on the above datasets shows
that H and r have negative correlation, and between gd

and r there is negative correlation to some extent (see
Figs. 1c and 1d, Tab. 2). Since for degree heterogeneity
networks, there are few nodes with large degree connected
to small degree nodes, the H is high, but r is negative. The
above analysis shows gd and H have high positive correla-
tion, so gd and r have negative correlation. For example,
for the KA, US, YEA and PB networks, there is a node
with large size of degree connecting a lot of small size
nodes. Figure 1 also shows that they have uneven degree

sequences, high dis-assortativity and degree heterogeneity.
The US network and PB network have obvious rich-club
phenomenon [17,39]. Here the two networks have high gd

(gd = 0.647 for US, gd = 0.690 for PB). Thus gd can reveal
the rich-club phenomenon to some extent.

Interestingly, gd has negative correlation with the epi-
demic spreading threshold λc = 〈k〉

〈k2〉 [40] (correlation co-
efficient CC = −0.623). Since for scale-free networks, gd is
high, but these networks have very low epidemic spreading
threshold λc. In Figure 1f the US network and PB network
have very high gd and low λc, which implies that the two
networks are more likely to spread diseases since the node
with large size of degree is susceptible to infection and
transmission of viruses. The another key application of gd

is it better reveals the accuracy of PA link prediction al-
gorithm (see Fig. 2 in Methods and experiments section).

3 Methods and experiments

In this section a new link prediction method is proposed,
which has better prediction accuracy and better robust-
ness to network structure than other methods. The above
two indices can be better applied to reveal how network
structure affects the accuracy of link prediction methods.

A standard metric AUC (areas under the receiver op-
erating characteristic curve) [41] is often used to evaluate
the accuracy of a link prediction method. In order to evalu-
ate the performance of an algorithm, the observed link set
E is randomly divided into two disjoint subsets: the probe

http://www.epj.org
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Table 3. The link prediction methods used for comparison are
computed as follows, where Γ (i) denotes the set of neighbors
of node i. |Γ (i)∩ Γ (j)| is the number of common neighbors of
node i, j, and ki is the degree of i. A is adjacency matrix, and
ε = 0.01. For details please refer to [16].

CN sij = |Γ (i) ∩ Γ (j)|
Salton (Sal) sij = |Γ (i)∩Γ (j)|√

ki×kj

Jaccard sij = |Γ (i)∩Γ (j)|
|Γ (i)∪Γ (j)|

Sφrensen (Sen) sij = 2|Γ (i)∩Γ (j)|
ki+kj

Hub Promoted Index (HPI) sij = |Γ (i)∩Γ (j)|
min{ki,kj}

Hub Depressed Index (HDI) sij = |Γ (i)∩Γ (j)|
max{ki,kj}

Leicht-Holme-Newman (LHN) sij = |Γ (i)∩Γ (j)|
ki×kj

Adamic-Adar (AA) sij =
∑

z∈Γ (i)∩Γ (j)

1
log kz

Resource Allocation (RA) sij =
∑

z∈Γ (i)∩Γ (j)

1
kz

Local Path (LP) sLP = A2 + εA3

Preferential Attachment (PA) sij = ki × kj

set EP (this accounts for 10% of links generally) and the
training set ET (this accounts for 90% of links). EP is used
for testing and is regarded as unknown information. ET

is viewed as known information. A link prediction method
provides an ordered list of scores of all links in U − ET

(scores represent the likelihood of missing links), where U
is a universal set for N(N − 1)/2 links. At each time, we
will select randomly a link in U−E and a link in probe set
EP to compare their scores. After comparison of n times,
there are n′ times the links in EP having higher scores and
n′′ times they have same scores. The AUC is defined as

AUC =
n′ + 0.5n′′

n
. (11)

A good prediction method should have high AUC, that
is, the links in the probe set have higher scores than non-
existing links.

A link prediction method gives the scores between
pairs of nodes of missing links. The higher scores repre-
sent higher likelihood of missing links. There are many
link prediction methods based on the common neighbors
metric [16], which are listed in Table 3.

A common feature of these methods is that they pay
more attention to the common neighbors of two nodes,
since two individuals which have more common friends
are more likely to become friends. The Preferential At-
tachment method is originated from the evolution model
where a new link chooses nodes with probability pro-
portional to their degree [23]. The Local Path method
takes advantage of the information of the next nearest
neighbors.

In a network if two nodes i and j have degree ki and kj ,
respectively, they choose their neighbors at random. The
total expected number of common neighbors between two
nodes is kikj/N . It is thought to be more likely to pos-

sess a missing link where between the two nodes is a high
difference of the actual number of common neighbors and
the expected number choosing randomly, that is

P
(1)
ij = CNij − kikj/N, (12)

where CNij = |Γ (i) ∩ Γ (j)| is the actual number of com-
mon neighbors of node i, j. This probability shows the
similarity between two nodes to some extent [42]. Fur-
thermore, the connections of the neighbors of node i, j
are considered. Let x ∈ Γ (i), y ∈ Γ (j) (x �= y). Similarly,
the expected number of links between x and y if links are
placed at random is kxky/2m, and the actual number of
links falling in between x and y is axy (the element of the
adjacency matrix). For a real-world network it is more
possible that a significant fraction of links fall in between
pairs of nodes of Γ (i) and Γ (j) than at random if there is
a missing link (i, j), that is so-called short loops [28],

P
(2)
ij =

∑

x∈Γ (i),
y∈Γ (j),
x �=y

(axy−kxky/2m). (13)

A new link prediction method is proposed, which sets
scores between pairs of nodes as

sij = P
(1)
ij + P

(2)
ij . (14)

Our method further reduces the probability of a “De-
generate State” [18] – the probability that each pair of
nodes is assigned same score. This phenomenon is obvious
for the CN method, since there are more pairs of nodes
with the same number of common neighbors. Thus our
method gives better prediction accuracy. The comparison
of prediction accuracy under the AUC metric in 10 real-
world networks is given in Table 4, where the AA and
RA method give close results due to their similar form.
The PA method performs better for scale-free networks
(high gd), since for these networks the probability that
a new link connects i and j is proportional to ki × kj ,
So for the KA network and YEA network, the PA method
gives better results (they have high gd, gd = 0.385 for KA,
gd = 0.537 for YEA). The accuracy of the LP method is
higher than the CN method, since when ε = 0, the LP
degenerates to the CN method. The remarkable feature of
our method is its high prediction accuracy in the CIR net-
work, YEA network and PW network, because our method
pays attention to connections of neighbors of node i, j be-
sides vertex similarity, that is P 2

ij . Conversely, most link
prediction methods give their worst results in these net-
works, since they depend on more the common neighbors,
but these three networks possess low cn (see Fig. 1a).

Overall, most methods give relatively good results in
those networks with more the common neighbors (high cn)
except the PA method. For example, the CN method is
completely dependent on the common neighbors metric.
The Sal, Jaccard, Sen, HPI, HDI, and LHN methods are
different normalization methods based on the common
neighbors. The PA method gives relatively good results in
those networks with high gd. The CN method is simple,

http://www.epj.org
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Table 4. The comparison of accuracy of various link prediction methods under the AUC metric with 10% probe set in 10
real-world networks. The results are the average of 20 realizations for each network, and the probe set EP is randomly removed
every time. The highest value for each network is labeled in boldface.

AUC KA PI1 DP SO PI2 PK FB CIR YEA PW
PA 0.680 0.484 0.650 0.541 0.398 0.675 0.259 0.392 0.626 0.442

Jaccard 0.633 0.848 0.803 0.746 0.881 0.875 0.859 0.549 0.542 0.586
LHN 0.624 0.848 0.782 0.745 0.882 0.845 0.861 0.549 0.542 0.586
HDI 0.620 0.846 0.804 0.744 0.880 0.863 0.858 0.549 0.542 0.586
HPI 0.734 0.843 0.785 0.748 0.879 0.891 0.857 0.549 0.543 0.586
Sen 0.633 0.848 0.803 0.746 0.881 0.875 0.859 0.549 0.542 0.586
Sal 0.659 0.847 0.797 0.747 0.880 0.882 0.859 0.549 0.542 0.586
CN 0.682 0.832 0.767 0.746 0.873 0.887 0.848 0.549 0.544 0.586
RA 0.758 0.840 0.807 0.748 0.876 0.901 0.848 0.549 0.546 0.586
AA 0.744 0.840 0.808 0.748 0.876 0.900 0.848 0.549 0.545 0.586
LP 0.717 0.867 0.800 0.748 0.889 0.908 0.862 0.603 0.753 0.631
Our 0.781 0.888 0.802 0.770 0.927 0.894 0.889 0.696 0.880 0.796

Fig. 2. Pearson correlation coefficients of prediction accuracy AUC versus other parameters (cn versus AUC, c versus AUC,
r versus AUC, gd versus AUC, H versus AUC) with respect to various methods in 10 networks.

but it leads to degenerate state. The RA and AA methods
assign more weights for low degree common neighbors and
reduce a degenerate state. Thus they obtain better accu-
racy in many networks. The RA method, AA method, LP
method and our method give better accuracy than others.
The LP method and our method can predict these links
that generate short loops of length more than 3. Thus for
most networks they further improve the prediction accu-
racy at the cost of being a little more time-consuming.

Furthermore, we compare the correlation between pre-
diction accuracy AUC and cn, c, r, gd, H (see Fig. 2).
Because most of these methods are based on common
neighbor metric, cn and c both pay attention to the com-
mon neighbors. The experimental results further confirm
that the AUC of the Jaccard, LHN, HDI, HPI, Sen, Sal,
CN, RA and AA methods have positive correlation with
cn, c. The index cn can better describe the correlations
than c in Figure 2, since it pays more attention to the
strength of links with the common neighbors. Thus cn pro-
vides a good reference for choice of link prediction meth-
ods according to network structure, i.e. it is not suitable
to use these methods based on common neighbor metric to
predict missing links for these networks with low cn. For
example, in Table 4 the AUC of most algorithms for the

CIR, YEA and PW networks are low (cn = 0.137 for the
CIR network, cn = 0.143 for the YEA network, cn = 0.208
for the PW network in Fig. 1a).

In Figure 2, the AUC of the PA method has positive
correlations with gd and H , and negative correlation with
r, but gd shows higher correlations with the prediction
accuracy of the PA method. Thus it is suitable to use the
PA method for some networks with high gd (KA network
and YEA network) and rich-club networks (US network
and PB network). The PA method achieves link prediction
with minimal time consumption since only the information
of node degree is needed.

Figure 2 indicates that the cn index and gd index can
better reveal the correlation between the prediction accu-
racy and network structure than other indices. Thus they
can provide better reference for choice of link prediction
methods. It is not difficult to find that the LP method
and our method have low correlations with these param-
eters from Figure 2, and better prediction accuracy from
Table 4. Thus our method has better robustness to net-
work structure. Especially, the RA method, AA method,
LP method and our method give better results in these
networks with high cn, such as the PI1 network, PI2 net-
work and PK network.

http://www.epj.org
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4 Conclusion and discussion

How network structure affects the accuracy of link predic-
tion methods is an interesting problem, but in the past
few years there are little literature on this subject. In this
paper, we use the common neighbors index cn and the
Gini coefficient index gd to reveal the relation between
them. Furthermore a new method to predict missing links
is proposed. Although cn and c both pay attention to the
common neighbors, the experimental results show that the
index cn has higher correlation with prediction accuracy
AUC than the clustering coefficient c, since cn pays more
attention to the strength of links with common neighbors.
Therefore cn can provide a good reference for choice of
link prediction methods based on common neighbor met-
ric (i.e., it is not suitable for these networks with low cn

to use these methods). To some extent cn can also reveal
the small-world property of real-world networks.

Indices gd and gμ have high positive correlation. They
can reveal the rich-club phenomenon. The experimental
results show that there is a high positive correlation be-
tween gd and the prediction accuracy of the PA method.
Thus for some rich-club networks, such as the US network
and PB network, the PA method can be used to achieve
link prediction with minimal time consumption since only
the information of node degree is needed. Meanwhile, gd

has strong positive correlation with H , and negative cor-
relation with r, which can be explained reasonably by
network structure. Furthermore we proved that gμ is no
less than gd, which indicates that for an undirected and
unweighted network, the uneven degree sequence means
the uneven Laplacian eigenvalues sequence. An interest-
ing situation is that gd has negative correlation with the
epidemic spreading threshold λc, which can be explained
by the characteristic of a scale-free network. For exam-
ple, there are some networks with high gd, such as the US
network and PB network, where a node with large size of
degree is susceptible to infection and transmits virus.

For most networks the LP method and our method
further improve the prediction accuracy at little additional
time cost, and reduce the degenerate state. Our method
shows better robustness to network structure and better
prediction accuracy than the LP method. The complexity
of two methods is the same, O(l3N), where l is the time
complexity to traverse the neighborhood of a node [18].

Beyond that, a new method of network decomposition
is proposed according to cn. The relation between gd and
gμ provides some conveniences to study the fluctuation of
eigenvalue sequence, since it is easy to obtain degree se-
quence, but computing all eigenvalues is a large time cost
for large-scale networks, or even impossible. It is reported
that the community structure in a network has correla-
tion with the fluctuation of eigenvalues of the Laplacian
matrix [43]. Thus cn and gd shed some light on further
research for network properties and network structure.
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