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Abstract. We study experimentally the flow of a foam confined as a bubble monolayer between two plates
through a convergent channel. We quantify the velocity, the distribution and orientation of plastic events,
and the elastic stress, using image analysis. We use two different soap solutions: a sodium dodecyl sulfate
(SDS) solution, with a negligible wall friction between the bubbles and the confining plates, and a mixture
containing a fatty acid, giving a large wall friction. We show that for SDS solutions, the velocity profile
obeys a self-similar form which results from the superposition of plastic events, and the elastic deformation
is uniform. For the other solution, the velocity field differs and the elastic deformation increases towards
the exit of the channel. We discuss and quantify the role of wall friction on the velocity profile, the elastic
deformation, and the rate of plastic events.

1 Introduction

Aqueous foams are metastable dispersions of gas bubbles
within a continuous liquid phase, which is a solution of
surfactants, which stabilise the liquid films separating ad-
jacent bubbles from rupture [1]. Two physical parameters
are crucial in the description of foams: the liquid frac-
tion φ�, and the mean bubble area A (or, equivalently, the
mean bubble radius).

By opposition to bubbly liquids, foams have generally
a liquid fraction low enough to be a jammed system: the
bubbles are packed and share thin films. Hence, bubbles
have to deform elastically by a substantial amount be-
fore flowing one past each other, and foams then acquire
elastoplastic properties. They thus belong to the vast class
of complex fluids, like polymers, pastes or slurries. Con-
trary to most other complex fluids, the microstructural
item of foams, i.e. the bubble, is easy to image and its el-
ementary micromechanics is defined unambiguously. More
precisely, the elastic stress can be directly deduced from
the geometry of the bubble boundaries [2], and there is a
clear elementary plastic event, the so-called T1 event: it
is the neighbour swapping of four adjacent bubbles. The
macroscopic fields (elastic stress, plastic deformation, and
velocity) describing the mechanics of a foam as a whole
then directly result from averaging the information ob-
tained at the bubble scale. Therefore, foams (as well as
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dense, jammed emulsions) are model systems to under-
stand the flow of complex fluids across the scales.

Because foams are opaque in bulk, obtaining the infor-
mation at the bubble scale is difficult on three-dimensional
(3D) foams and the local description of 3D foam flows has
been performed only very recently, using fast X-ray to-
mography [3]. Most experimental studies have resorted to
foams confined in two dimensions (2D), e.g. between two
glass plates, which renders the structure of the bubbles
transparent (fig. 1b). For these confined systems, various
flow geometries have been studied: parallel flows driven by
the motion of side walls (Couette flows) [4,5] or by a pres-
sure gradient (Poiseuille flows) [6], or flows in more com-
plex geometries such as past obstacles [7–9] or through
constrictions [10,11]. Similarly, most numerical simula-
tions of foams in pure shear [12–14], past obstacles [15–18],
or through constrictions [19,20] have been performed in
2D, with some exceptions in 3D, limited to monodisperse
foams in quasistatic regimes [21,22].

A specificity of foams confined in 2D by plates is the
presence of friction (which we shall henceforth call “wall
friction”) between the moving bubbles and the fixed walls,
which increases at increasing foam velocity [23]. If the ve-
locity is low enough, the effect of wall friction remains
negligible; in particular, the foam flow is quasistatic. On
the other hand, at large velocity, wall friction competes
with the internal stress of the foam, of elastic and viscous
origin, and can even lead to the catastrophic failure of the
foam, reminiscent of brittle fracture [24–26].

So far, the flow of foams or dense emulsions in a con-
vergent channel has not been much studied, except by the
groups of Earnshaw and Weeks, with a special emphasis
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Fig. 1. (a) Sketch of the side view of the setup. For clarity,
the slanted plates limiting the convergent channel have not
been drawn. (b) Top view of the convergent channel, with the
definition of the polar coordinates used throughout the text.

on the local description of plastic events [27–29]. How-
ever, this configuration is particularly interesting, because
the convergent flow is complex enough to include both
shear and elongation, contrary to parallel flows, but sim-
ple enough to be amenable to some analytical predictions.
Indeed, in Newtonian fluid mechanics, it is one of the very
few configurations where the full Navier-Stokes equations
admit an analytical solution, at least for a steady and
purely radial flow [30,31], with in particular an explicit
expression of the velocity profile in the boundary layer at
high Reynolds number [32,33]. This comes from the fact
that for incompressible flows at velocity v, the symmetry
of the convergent channel (neglecting end effects) giving
a radial flow v = v(r, θ)er (see fig. 1b for the definition
of the polar coordinates), combined with the continuity
equation ∇ ·v = 0, yields a particularly simple expression
for the velocity field:

v =
f(θ)

r
, (1)

irrespective of the constitutive equation of the fluid.
In this paper, our goal is two-fold. First, we document

the quasistatic flow of a foam in a convergent channel,
when wall friction plays a negligible role. In particular,

we show that the velocity profile (1) holds, we show the
clear connection between the velocity field and the dis-
tribution of plastic events, and we quantify the efficiency
of plastic events as increments of deformation. Second, we
study non-quasistatic flows at large wall friction, we quan-
tify how the latter modifies both the velocity profile (1)
and the elastic stress, and we discuss these effects in the
context of recent models.

2 Materials and methods

2.1 Setup

We have adapted the setup described in [11]. The foam
flows in a Hele-Shaw cell, made of two horizontal glass
plates of length 170 cm and width 32 cm, separated by a
gap h = 2mm thin enough that the foam is confined as a
bubble monolayer (fig. 1b). Two slanted plastic plates of
thickness 2mm are inserted aside the Hele-Shaw cell, so
that the remaining space within the channel constitutes
the convergent channel, of opening half-angle α0 = 26◦
(fig. 1b). The exit of the convergent channel has a width
of 2.2 cm, much smaller than the width at its entrance
(32 cm).

The channel is connected upstream to a vertical cham-
ber (fig. 1a) in which a soap solution is fed at a prescribed
flow rate Q� thanks to a pump. Nitrogen is continuously
blown through injectors at the bottom of this chamber.
The flow rate in each injector is independently controlled
with a flow rate controller. We identify the liquid fraction
φ� as the ratio of the liquid flow rate to the total flow rate:
φ� = Q�/(Qg +Q�), with Qg the gas flow rate. The result-
ing foam accumulates on top of the chamber, then flows
through the channel. The transit time through the whole
channel is less than 10 minutes in all experiments; we do
not observe significant changes of bubble size during this
time, hence coarsening is negligible.

We have used two soap solutions. The first is a solu-
tion of sodium dodecyl sulfate (SDS) in ultrapure water
at a concentration of 10 g/L, much larger than the critical
micellar concentration of SDS (2.3 g/L): the foam was per-
fectly stable and no film rupture was observed. The surface
tension of this solution is γ = 36.8mN/m. The second so-
lution is a mixture of sodium lauryl-dioxyethylene sulfate
(SLES), cocoamidopropyl betaine (CAPB) and lauric acid
(LAc), following the protocol described in [34]. Its surface
tension is γ = 23.8mN/m. The solution of SDS has a neg-
ligible surface viscoelasticity, and the wall friction is rel-
atively weak. On the other hand, the SLES/CAPB/LAc
mixture has a large surface viscoelasticity, and the wall
friction is large. We will see in sects. 3 and 4 that this has
a dramatic effect on the flow.

The contraction region is lit by a circular neon tube,
giving an isotropic and nearly homogeneous illumination
over most of the image. Movies of 1000 images of the foam
flow are recorded with a CCD camera.
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Fig. 2. Snapshot of a plastic event. Two successive skeletonised
images of the foam (grey, then black) are superimposed. The
link between the centres of the two bubbles which are about
to lose contact is figured by the red plain line, and the link
between the centres of the two bubbles that have established
contact is figured by the green dashed line. The angle β of the
appearing contact with respect to the radial direction is also
figured.

2.2 Image analysis

The movies are analysed using a home-made procedure
fully described in [6]. Briefly, the velocity field is obtained
after averaging all the displacements of all individual bub-
bles between consecutive frames. The plastic events, char-
acterised by the neighbour swapping of four adjacent bub-
bles (fig. 2), are also automatically detected. This is not an
easy task, especially because they are rare events, which
are easily overwhelmed by artifacts if image analysis is not
performed with extreme care. We estimated the relative
uncertainty on the number of plastic events reported in
this paper by visual inspection on a selection of images.
Moreover, for dry 2D foams, the elastic stress σ equals
(see [2] and see [6] for a full discussion)

σ = 2γhρ�

〈
� ⊗ �

�

〉
, (2)

where � designs an edge vector, i.e. a vector joining the
two vertices at the extremities of a bubble edge, and ρ�

is the areal density of such edges (its order of magnitude
is thus 1/A). The brackets stand for the average over the
time interval and space zone over which the elastic stress
is computed. The ability to automatically measure plas-
tic events and elastic stress by image analysis is a major
advantage of dry 2D foams for studies of local rheology.

To compute averaged quantities like the fields of ve-
locity, elastic stress and frequency of plastic events, we
use a system of polar coordinates which reflects the sym-
metry of the channel. The origin is the convergence point
of the channel (fig. 1b), and the angular domain covering
the channel is −α0 ≤ θ ≤ α0, hence θ = 0 represents the
axis of symmetry of the channel. The convergent chan-
nel occupies the range r ≥ 2.2/(2 sin 26◦) = 2.5 cm and

Fig. 3. Velocity field for the reference experiment.

r ≤ 32/(2 sin 26◦) = 36 cm (see sect. 2.1 for the dimensions
of the channel). We mesh the flow domain by boxes shaped
as angular sectors, each with a radial length Δr = 7.4mm
and a angular opening Δθ = 3.4◦.

3 Results

3.1 Reference experiment with a SDS solution

We first report the measurements on a foam made of SDS
solution, with the following control parameters: Qg =
100mL/min, Q� = 9.8mL/min, hence φ� = 8.9%, and
A = 33.0mm2. We henceforth call this experiment the
“reference” experiment. We plot the velocity field in fig. 3
and the elastic stress field in fig. 4. As expected, the veloc-
ity field looks radial, and the velocity increases as the foam
advances in the convergent channel. The elastic stress also
obeys the radial symmetry: the long axes of the ellipses are
aligned with the radial direction. The elastic stress does
not seem to depend on the distance r along the channel.

We now plot the velocity components along the sym-
metry axis θ = 0 in fig. 5. This plot shows that the ve-
locity component vθ remains negligible compared to −vr,
and that the absolute value |vr| = −vr of the radial ve-
locity decreases at increasing r; notice that vr < 0 be-
cause the flow is convergent. Moreover, a log-log plot of
−vr(r, θ = 0) (inset of fig. 5) shows that its r-dependence
is very close to a power law −vr ∝ 1/r, which is compat-
ible with the velocity profile (1). Concerning end effects,
the graph shows a saturation of −vr(r, θ = 0) at the two
shortest distances r that we were able to measure (r = 18
and 26mm): this is the signature of the transition from
the convergent channel to the straight exit channel, which
takes place at r = 25mm (see sect. 2.2). On the other
hand, the entrance of the channel is at r = 36 cm (see
sect. 2.2), far larger than the largest distance r presented
on fig. 5, hence entrance effects are probably negligible.
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Fig. 4. Elastic stress field for the reference experiment. The
elastic stress (2) is a symmetric and positive tensor, hence it
possesses two positive eigenvalues with orthogonal eigenvec-
tors. It can thus represented as en ellipse, with a major (minor)
axis along the direction of maximal elongation (compression).
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Fig. 5. Velocity components −vr (circles) and vθ (squares) as
a function of r, along the central axis θ = 0. Inset: log(−vr)
as a function of log r, and its best linear fit, whose slope is
−1.03 ± 0.02.

We have checked (data not shown) that the two main
features of fig. 5: vθ negligible compared to −vr, and
−vr ∝ 1/r, are recovered at various angular positions θ
within the channel. To isolate a possible angular depen-
dence, we therefore plot −rvr (averaged over 21 boxes) as
a function of θ, in fig. 6. It shows that the angular velocity
profile is flat, with no significant deceleration towards the
side walls.

Next, we plot the elastic stress components along the
symmetry axis θ = 0 in fig. 7. It shows that the shear com-
ponent σrθ is negligible compared to the diagonal compo-
nents σrr and σθθ, which was expected due to symme-
try. The radial component σrr is always greater than the
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Fig. 6. Plot of −rvr as a function of θ/α0. To improve the
statistics, −rvr has been averaged over 21 boxes, for r be-
tween 77 and 225 mm. The error bars come from the standard
deviation of the data between different boxes.
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Fig. 7. Elastic stress components σrr (circles), σθθ (lozenges)
and σrθ (squares) as a function of r, along the central axis
θ = 0.

orthoradial one σθθ, which quantifies the fact that the bub-
bles get elongated towards the exit of the channel (fig. 4).
More interestingly, the two diagonal components remain
roughly constant along the channel. This saturation of the
elastic stress means that the foam has yielded within our
observation field, which suggests again that entrance ef-
fects are negligible. Indeed, entrance effects would be char-
acterised by an elastic loading of the foam, hence we would
measure an increase of σrr and a decrease of σθθ.

We now turn to plastic events (T1’s). These are rela-
tively rare events: we were able to detect 3 × 103 of them
on the full movie, whereas there are about 106 individual
data (about 103 bubbles on each of the 1000 images of the
run) over which to average to determine velocity or elas-
tic stress fields. Contrary to velocity and elastic stress, we
will thus not represent a map of plastic events. We have
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Fig. 8. T1 frequency as a function of r, along the central axis
θ = 0. Inset: logarithm of the T1 frequency as a function of
log r, and its best linear fit excluding the two points at shortest
r, which slope is −2.10 ± 0.14.

checked that they are equally distributed along θ (data
not shown); we thus directly average over θ, and define
the T1 frequency fT1, in mm−2 s−1, as the number of
T1’s per unit time and per unit area: fT1(r, θ)r Δr Δθ is
thus the frequency of T1’s occurring in the box centred
on (r, θ). We estimated a relative uncertainty of 10% on
this measure. The T1 frequency is plotted as a function
of r in fig. 8. It increases at decreasing r, more sharply
than the velocity, until the exit of the convergent channel
is reached, then strongly decreases for the shortest inves-
tigated r which is in the straight exit channel. Excluding
this end effect, a log-log plot of the T1 frequency shows
that its r-dependence is compatible with a power law of
exponent −2 (inset of fig. 8).

Not only the spatial distribution of the plastic events
matters, but also does their orientation. To quantify it,
we measure the angles between the radial direction er

and the direction of disappearing contacts, i.e. the direc-
tion linking two centres of neighbouring bubbles which are
about to lose contact, and the direction of appearing con-
tacts, i.e. the direction linking two centres of neighbouring
bubbles which have just established contact (fig. 2). For
simplicity, we call these angles appearing and disappear-
ing angles. Their range can be restricted to the interval
[0, π/2]. Their distributions are plotted as histograms in
fig. 9. The appearing angles have their maximum at π/2,
and the disappearing angles at 0. Hence, the bubbles that
detach tend to be aligned streamwise, and the bubbles
that attach tend to be aligned spanwise. The distribution
of the appearing angles is significantly wider than the one
of disappearing angles.

To conclude this presentation of the results with the
SDS solution, we mention that we have performed extra
experiments, changing systematically and independently
the following parameters: the liquid flow rate Q� (up to
500mL/min), to change the average velocity; the gas flow
rate (down to 1mL/min), to change the liquid fraction
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Fig. 9. Histograms of the distributions of the appearing angles
(in green) and of the disappearing angles (in red).

down to 0.5%; and the bubble size, in the range 18–
40mm2. Within this range of parameters, we have not
measured any significant modification to the main features
of the foam flow, namely a velocity field of the form (1),
and a saturation of the elastic stress as in fig. 7.

3.2 Experiments with the SLES/CAPB/LAc mixture

The results obtained with the SDS solutions suggest that
wall friction remains negligible. To quantify the effects of
wall friction, we now present some measurements done
with the SLES/CAPB/LAc mixture. It has a large inter-
facial dilatational viscoelasticity [34], hence the gas/liquid
interfaces are barely compressible. As a result, the bub-
bles tend to entrain these interfaces at their own velocity.
Hence, the wetting films between the bubbles and the top,
bottom and side plates are strongly sheared, and these
foams develop a strong wall frictional shear stress [23].

We present an experiment with the same liquid frac-
tion: φ� = 8.9% as the experiment detailed in sect. 3.1
with the SDS solution, and a bubble area: A = 36.7mm2

very similar (10% larger) to that experiment. Once this
foam is formed, we push it at a larger flow rate (equal to
510mL/min) to enhance the effect of wall friction. This
flow rate is larger than the one of the experiment pre-
sented in sect. 3.1 (110mL/min). However, these two ex-
periments remain comparable: as mentioned in sect. 3.1,
we have checked that the results presented there for SDS
solutions do not change significantly when the flow rate is
increased to 500mL/min.

We first plot the velocity as a function of r, for two
angular positions: the symmetry axis θ = 0, and an angle
θ = −25◦ close to the left boundary of the channel, in
fig. 10. As expected, the velocity is a decreasing function
of r. A first difference compared with the SDS solution
(fig. 6) is that −vr is significantly lower close to the side
walls compared to the symmetry axis. Moreover, the de-
crease of −vr as a function of r is stronger at the symmetry
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Fig. 11. Elastic stress components σrr (circles), σθθ (lozenges)
and σrθ (squares) as a function of r, along the central axis
θ = 0.

axis. Close to the boundary, the decrease of −vr as a func-
tion of r clearly deviates from a power law behaviour, and
slows down close to the exit of the convergent channel.
Moreover, the angular profile depends on r: the inset of
fig. 10 shows that the larger r, the flatter the angular
velocity profile vr(θ). Therefore, the velocity field shows
significant deviations from the scaling (1).

As we did for the SDS solution (fig. 7), we plot the
elastic stress components along the symmetry axis θ = 0
in fig. 11. Once again, the shear component σrθ is negli-
gible compared to the diagonal components σrr and σθθ,
and the radial component σrr is greater than the ortho-
radial one σθθ. But contrary to the SDS solution, these
components do not remain constant across the channel:
σrr tends to decrease, and σθθ to increase, at increasing

Fig. 12. Snapshots of the foam at the exit of the con-
vergent channel, (a) for the SDS solution, (b) for the
SLES/CAPB/LAc mixture. The bubbles are visibly more elon-
gated streamwise in the latter case.

r. As a consequence, the deformation of the bubbles tends
to increase as they flow towards the exit of the convergent
channel. The bubbles are always more deformed than with
the SDS solution (fig. 12).

Finally, we recorded the T1 frequency for this experi-
ment. It turned out to be significantly noisier than for the
SDS solution; the relative uncertainty was estimated to
be 30%, and the data for r ≥ 150mm are too noisy to be
exploited. We present and discuss these data in sect. 4.2.

4 Discussion

4.1 A model plastic flow?

Our experimental results show that for a foam experienc-
ing a negligible wall friction (see sect. 4.2 for more discus-
sion on the influence of wall friction), the kinematics of
the flow in a convergent channel follows the very simple
law (1) (figs. 3 and 5).

This result does not come as a surprise, since the foam
is quasi-incompressible. Since it is mostly constituted by
gas, the order of magnitude of its bulk modulus is given
by the atmospheric pressure, equal to 105 Pa. The order
of magnitude of its shear modulus, given by γ/

√
A [1],

is much lower: with γ = 36mN/m and A = 33mm2,
γ/

√
A ≈ 10Pa. The deviation of the velocity profile

from (1) in the presence of wall friction is discussed in
sect. 4.2.

The fact that the velocity field of the reference exper-
iment obeys (1) makes it a model to study the interplay
between plasticity and flow. More precisely, at constant
elastic stress, the deformation rate must be directly corre-
lated to the rate of plastic events. Our experimental results
strongly suggest that it is indeed true: the rate of plastic
events, measured independently from the velocity field, de-
pends on r with a power law compatible with 1/r2 (inset
of fig. 8), which is precisely the scaling of the deformation
rate associated with the velocity field (1). Furthermore,
the preferential orientations of the plastic events (fig. 9)
also support this idea: bubbles preferentially detach along
the direction of elongation er, whereas they preferentially
attach along the direction of compression eθ.
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Let us go further and compare the prefactors. A sin-
gle plastic event is expected to separate the two bub-
bles that detach by a distance of the order of the bub-
ble size, as fig. 2 already suggests. Hence, we may ex-
pect that the streamwise deformation rate, ∂vr/∂r, is of
the order of the rate of plastic events times the bubble
size. To test this idea, we fit the data again, but this
time we fix the exponents. We fit the velocity by a law:
log(−vr) = log c1 − log r, and the T1 frequency by a law:
log fT1 = log c2−2 log r. We find as best fitting parameters
c1 = (1.03 ± 0.01) × 103 mm2/s, and c2 = 25.9 ± 2.2 s−1.
The ratio of these two parameters gives a characteristic
area AT1 = 40± 4mm2, which is indeed very close to the
bubble area A = 33.0mm2, such that

∂vr

∂r
= AT1fT1.

This confirms quantitatively the kinematic consequence of
T1’s, namely to incrementally shift bubbles streamwise, by
inserting additional bubbles in between (fig. 2).

It is interesting to point out that this characteristic
area is a somewhat different concept from the range of
plastic events which has been abundantly discussed in the
context of plastic flows [35], or from the size of a plastic
event which can be estimated by indirect methods like dif-
fusive wave spectroscopy [36]. The area AT1 characterises
the “efficiency” of a given plastic event as an increment of
deformation, but does not describe its effect in its neigh-
bourhood and the way it redistributes the elastic stress
around [37,38]. These two kinds of information are thus
complementary.

4.2 Influence of wall friction

4.2.1 Velocity field

The reference velocity field to which our results have been
compared is given by (1): v = f(θ)er/r. We have seen
that while the flow of a foam constituted by SDS so-
lution complies with such a profile, the foam made by
a SLS/CAPB/LAc mixture shows significant deviations.
This suggests that wall friction affects the velocity profile.

To start the discussion, we notice that (1) is a self-
similar profile. Self-similarity is expected to hold when
no characteristic length appears in the flow problem. For
the flow of a Newtonian fluid in a convergent channel, the
flow profile depends only on the Reynolds number Q2D/ν,
with Q2D the flow rate per unit length, and self-similarity
holds. In particular, the no-slip boundary condition does
not introduce extra parameters. For the foam with the
SDS solution, the wall friction is negligible also at the side
walls, hence free shear boundary condition ∂vr/∂θ = 0 at
θ = ±α0 applies to a good approximation (fig. 6). Like
the no-slip boundary condition, the free shear boundary
condition is compatible with the self-similar profile (1).
However, as soon as wall friction is introduced, another
characteristic coefficient appears, and the self-similarity is
lost.

Predicting the velocity profile for such a viscoelasto-
plastic material is a daunting task. However, it has been
shown in pure shear with no-slip boundary condition [5]
that elasticity may have a negligible effect on the velocity
profile, which can then be predicted analytically from a
balance between viscous stress and wall friction. On the
other hand, such a simplified approach fails to predict cor-
rectly the slip velocity along smooth walls in a Poiseuille
flow [6]. In our geometry, we derive the following velocity
profile neglecting elasticity in appendix A:

vr =
−Q/h

2rα0 − 2h�/(h + 2�)

(
1 − 2h

h + 2�
e−rα0/� cosh

rθ

�

)
,

(3)
where Q = Qg + Q� is the foam flow rate and � is a char-
acteristic length comparing the effect of wall friction and
viscous stress; this expression is valid only if �/r � 1,
which we argue is the case for SLES/CAPB/LAc mixtures
in appendix A.

The velocity profile (3) shows that wall friction is re-
sponsible for a deviation from (1). It also captures the
fact that the velocity at the side walls is lower than at
the centre of the channel, because of the extra friction
at the side walls. However, it predicts that vr(r, θ =
α0)/vr(r, θ = 0) is a decreasing function of r (see ap-
pendix A for a proof), whereas the opposite occurs in
experiments (fig. 10) for the SLES/CAPB/LAc mixture,
namely the fact that vr(r, θ = α0)/vr(r, θ = 0) increases
at increasing r. Indeed, it is the same failure as in the
Poiseuille flow of foams, namely that the slip velocity is
not well predicted [6]. There can be three reasons for this
discrepancy: i) the dependencies of wall friction on ve-
locity on one hand, and of viscous stresses on deforma-
tion rate on the other hand, may differ, ii) the hypothesis
� � r breaks down before the channel exit, iii) nonlocal
effects, more precisely the redistribution of elastic stresses
by plastic events, may matter.

4.2.2 Elastic stress

Figure 11 shows that for the SLES/CAPB/LAc mixture,
the normal elastic stress difference σrr − σθθ increases as
the bubbles flow faster towards the exit of the channel.
This effect has been previously mentioned in experiments
of a foam flowing through a constriction [11]. Similarly,
simulations of foam including non-quasistatic rate effects,
either a variation of surface tension in the so-called vertex
model [14], or an external velocity-dependent friction in
the so-called viscous froth model [39], report an increase of
the elastic deformation as the velocity or the deformation
rate increases.

To rationalise this fact, it has been proposed that the
elastic stress tends to increase as the relaxation time τr fol-
lowing a plastic rearrangement becomes significant com-
pared to the deformation rate ε̇ [40]. However, this depen-
dence of an elastic stress on the deformation rate has been
mostly discussed in simple shear, and only in theory or in
simulations. We thus propose to quantify this dependence
in our experiments.
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Fig. 13. Evolution of the length of a film created after a T1, for
the SDS solution (squares) and the SLES/CAPB/LAc mixture
(circles), and three snapshots of this film, represented by a
double arrow. The time origin was chosen as the first image
where this length could be measured reliably. The data were
fitted by an exponential relaxation of the form �(t) = �1 +
�2e

−(t−t0)/τr , with �1, �2, t0 and τr as fitting parameters; the
latter parameter is identified as the relaxation time following
the T1. It equals 0.019 ± 0.001 s for the SDS solution, and
0.13 ± 0.01 s for the SLES/CAPB/LAc mixture.

First of all, we need an estimate of the deformation
rate ε̇ relevant to our experiments. The flow kinematics
is more complicated than simple shear or pure elonga-
tion, but a representative deformation rate is given by
the axial elongation rate, i.e. the spatial variation of the
velocity along the symmetry axis. Hence, we will take
ε̇ = |∂vr/∂r|θ=0. To estimate this quantity from our mea-
surements of velocity, we first fit vr(r, θ = 0) by a power
law vr(r, θ = 0) = βrα, and we compute the deforma-
tion rate as the derivative of this fit: ε̇ = βαrα−1. An
advantage of our setup is that the deformation rate varies
by two orders of magnitude on a given experiment be-
tween the entrance (r = 32 cm) and the exit (r = 2.5 cm)
of the convergent channel. Since the flow is dominated
by elongation, the relevant elastic quantity to study is
the normal stress difference σrr − σθθ. To make the com-
parison easier with other experiments and other studies,
we divide the normal elastic stress difference by γ/

√
A as

in [40], and we call the resulting dimensionless quantity
(σrr − σθθ)/(γ/

√
A) the “elastic deformation”.

Next, we quantify the relaxation time τr. We proceed
as described in [41], by measuring the evolution of the
length of one newly created film after a T1. Even if the
relaxation process might be complicated [41,42], fig. 13
shows that the length of such a new film follows closely an
exponential relaxation towards a “final” length (although
this length drifts on longer times, as the bubbles concerned
by the T1 are advected away), and the characteristic time
of this exponential behaviour yields: τr = 0.019 s for the
SDS solution, and 0.13 s for the SLES/CAPB/LAc mix-
ture. We have checked on some other examples of newly
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Fig. 14. Plot of the elastic deformation (σrr − σθθ)/(γ/
√

A)
as a function of ε̇τr for foam flows with a SDS solution (full
symbols) or a SLES/CAPB/LAc mixture (empty symbols), for
Qg = 100 (circles), 250 (lozenges) and 500mL/min (squares).
The curve is a single fit of all data for the SLES/CAPB/LAc
mixture by a Herschel–Bulkley-like law: (σrr −σθθ)/(γ/

√
A) =

σ∗[1 + (ε̇τr/ε∗)n], with best fitting parameters σ∗ = 0.058 ±
0.004, ε∗ = 0.17 ± 0.06 and n = 0.40 ± 0.04.

created films that these values remain correct within 30%.
Hence, we take these two values as good estimates of the
relaxation time following a T1.

For the experiment with the SDS solution presented
in sect. 3.1, the deformation rate equals at most 1.7 s−1,
hence ε̇τr does not exceed 0.03. Hence, the relaxation time
after a T1 is everywhere negligible compared to the de-
formation rate, and the flow remains quasistatic, which
is consistent with the absence of variation of the elastic
stress components along the channel (fig. 7). On the other
hand, for the experiment with the SLES/CAPB/LAc mix-
ture presented in sect 3.2, we compute that ε̇ increases
from 0.10 to 11 s−1, hence ε̇τr from 0.013 to 1.4, along the
channel. Hence, as r decreases, the relaxation after plastic
rearrangements is no longer short compared to the loading
by the flow, which is consistent with the increase of the
elastic deformation on fig. 11.

To go further, we can test whether the elastic deforma-
tion can be rescaled by ε̇τr irrespective of the location r
within the channel. To improve the comparison, we com-
pile the results of five experiments at different gas flow
rates (100, 250 and 500mL/min), but at the same liq-
uid fraction φ� = 8.9% and the same area A = 35mm2

within 10%, and we plot the elastic deformation as a func-
tion of ε̇τr in fig. 14. This plot shows that all the data
for the SLES/CAPB/LAc mixture collapse on the same
master curve which is well fitted by a Herschel-Bulkley-
like law (σrr − σθθ)/(γ/

√
A) = σ∗[1 + (ε̇τr/ε∗)n] with a

characteristic exponent n = 0.40 ± 0.04. This may re-
mind the Herschel-Bulkley law followed by the flow curves
of SLES/CAPB/LAc foams [34], which exhibit a slightly
lower exponent (about 0.25). However, it is irrelevant to
push forward such a comparison, since we have no access
to the viscous stress. The limit σ∗ of this law at vanish-
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Fig. 15. Plot of the ratio of the T1 frequency to the foam
flow rate as a function of r, for the experiment with the SDS
solution (circles) and the SLES/CAPB/LAc mixture (squares).

ing deformation rate is also compatible with the data for
the SDS solution for ε̇τr lower than a few 10−3, suggesting
that this regime is the quasistatic elastoplastic limit, inde-
pendent on the solution except on its surface tension. How-
ever, the data for the SDS solution deviate from those with
the SLES/CAPB/LAc mixture at larger ε̇τr, and show lit-
tle dependence on ε̇τr. This suggests that the departure
from the quasistatic elastic deformation is not universal,
but depends on the viscous properties of the solution, and
not only through the relaxation time after T1’s.

4.2.3 Rate of plastic events

In sect. 4.1, we showed that at constant elastic de-
formation, the rate of plastic events is proportional to
the deformation rate. Since the experiment with the
SLES/CAPB/LAc mixture presents a significant increase
of the elastic deformation towards the channel exit
(fig. 11), it is interesting to investigate the relationship
between the T1 frequency and the deformation rate for
this experiment too.

The velocity fields depend on wall friction (figs. 5
and 10), but overall, the deformation rate is proportional
to the foam flow rate Q. Hence, a simple way to test
whether the elastic deformation has an influence on the
rate of plastic events at given deformation rate is to plot
the ratio fT1/Q as a function of r (fig. 15). Since fT1 is
averaged over θ, this approach is not sensitive to the an-
gular dependence of the radial velocity discussed for the
SLES/CAPB/LAc mixture (inset of fig. 10). Figure 15
shows that fT1/Q is lower for this experiment than for
the SDS solution. This clearly evidences an influence of
the elastic deformation on the rate of plastic events.

Recent models [35,43] claim that the rate of plastic
events should be proportional, not to the sole deformation
rate, but to the so-called fluidity, which is the ratio of
the deformation rate to the stress. Our results are indeed

in qualitative agreement with this statement. However,
it is not possible to make a quantitative comparison, for
the following reasons. i) It is the total stress (elastic plus
viscous) that appears in the fluidity, while we can measure
only the elastic contribution. ii) Fluidity models have been
devised for pure shear only, and our flow combines shear
and elongation. iii) The extension of fluidity models in the
presence of wall friction is not trivial [44,45].

5 Conclusions

In this paper, we have quantified in details the 2D flow of a
foam through a convergent channel. We have showed that
if wall friction is negligible, the velocity field obeys a sim-
ple self-similar form. It makes this experiment a model of
plastic flow: we could establish a clear connection between
the velocity field and the distribution of plastic events,
showing that all of them act efficiently as increments of
flow.

The use of the SLES/CAPB/LAc mixture enabled us
to quantify the departure from this simple picture as wall
friction becomes significant. We quantified for the first
time in an experiment how the elastic deformation in-
creases when the deformation rate increases to become
of the same order as the inverse of the relaxation time
following plastic events. We showed how the velocity field
is modified, with a significant deceleration of the foam
close to the smooth side walls, and a breakdown of the
self-similar form. This qualitative picture is predicted by
a model balancing wall friction and viscous stress, but this
model fails to capture the variation of the ratio of the slip
velocity to the centreline velocity. Finally, we showed that
the elastic deformation influences the relationship between
the rate of plastic events and the deformation rate.

We believe that our work opens several interesting per-
spectives. First, it would be interesting to find the missing
ingredient to offer a full quantitative prediction of the ve-
locity profile, including elastic effects, either in the frame
of a viscoelastoplastic model [46] or as an effective non-
local term [47]. In the same spirit but more on the ex-
perimental side, we could investigate the spatial effects of
plastic events, and how they modify the elastic stress in
their surroundings [38]. Moreover, if we showed that the
elastic deformation was an increasing function of the de-
formation rate for the SLES/CAPB/LAc mixture, it was
not as clear for the SDS solution: it would be interesting to
understand this difference, and more precisely to identify
unambiguously the parameter that controls the departure
from the quasistatic limit. Finally, we have observed in
some cases that increasing even more wall friction e.g.
by increasing the velocity leads to brittle fracture of the
foam. Fast confined flows could therefore be an interesting
alternative way to study fracture in foams.

We acknowledge discussions with Axelle Amon, Isabelle Can-
tat and Kirsten Martens. We thank Luca Biferale, Massimo
Cencini, Alessandra Lanotte and Mauro Sbragaglia for the or-
ganisation of the workshop “Flowing Matter Across the Scales”
which motivated this study.
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Appendix A. Derivation of the velocity
profile neglecting elasticity

In this appendix, we predict the velocity profile of a foam
flowing through a convergent channel when neglecting
elastic stresses. We revisit the model by Janiaud et al. [48],
who first studied the interplay between viscous stress and
wall friction in the context of a plane Couette flow. Be-
cause of its low density and large effective viscosity, foam
has a negligible inertia in the studied flow, which is fur-
thermore steady. With these assumptions, the model by
Janiaud et al. writes

0 = ∇ · τ − ∇p +
2
h

f , (A.1)

where τ is the stress tensor within the foam, p the pressure
field and f the wall friction force per unit area.

For simplicity, we assume that the viscous stresses
scale linearly with the deformation rate: τ = η(∇v+∇vT ),
with η the foam effective viscosity, and that the wall fric-
tion force scales linearly with the velocity: f = −hβv/2,
with β a friction coefficient. In reality, these scalings are
sublinear [23], but nonlinear corrections were shown not
to modify much flow profiles in Couette flows [49] and
Poiseuille flows [6], and we expect the same here. With
these assumptions, (A.1) becomes the Stokes equation
with an additional term accounting for wall friction

0 = ηΔv − ∇p − βv. (A.2)

Because wall friction introduces a new term and a new co-
efficient β, self-similarity does not hold: the velocity pro-
file (1) is not solution of (A.2).

As boundary conditions, we require that θ = 0 is
an axis of symmetry, hence ∂vr/∂θ = 0 at θ = 0. Fur-
thermore, extra friction at the side walls imposes that
τrθ = ±f · er at θ = ±α0, hence

1
2
hβvr = ∓η

r

∂vr

∂θ
, θ = ±α0. (A.3)

Finally, conservation of flow rate imposes the integral con-
dition:

Q = −h

∫ α0

−α0

rvrdθ, (A.4)

where Q is the volumetric flow rate, as defined in the ex-
periments. The minus sign reminds that when Q > 0, then
vr < 0.

To solve the problem, we take the curl of (A.2) to re-
move the pressure. For a 2D flow, the vorticity ω = ∇×v
is a scalar field: ω = ωez, hence we get

ηΔω − βω = 0. (A.5)

This is a Helmholtz equation which can be solved analyti-
cally [50], but we will content ourselves with a qualitative
discussion and an approximate solution.

First, if wall friction is negligible as is the case for
SDS solution, then eq. (A.5) reduces to Δω = 0, and the
boundary condition (A.3) reduces to ∂vr/∂θ = 0 at θ =

±α0. Together with the symmetry condition ∂vr/∂θ = 0
at θ = 0, this imposes that vr does not depend on θ.
Therefore, the conservation of flow rate (A.4) imposes the
velocity profile

vr = − Q

2α0hr
,

which is a particular case of the self-similar law (1).
If wall friction is not negligible, eq. (A.5) contains a

characteristic length: � =
√

η/β which is the shear locali-
sation length for the pure shear flow of confined foams [48,
5]. In the convergent geometry, it is relevant to compare
it with the distance r. In our experiments, we have seen
that the exit of the channel is at r = 2.5 cm. In previous
experiments with comparable foams [6], the length � was
found to be around 0.5mm. Hence, we now focus on the
case �/r � 1.

A naive inspection of (A.5) suggests the ratio of the
viscous term ηΔω ≈ ηω/r2 to the wall friction term is of
order �2/r2 � 1, hence wall friction dominates and (A.5)
reduces simply to

ω = 0, (A.6)

i.e. an irrotational flow. However, this is incompatible with
the boundary condition (A.3), which shows that sidewall
friction is a source of vorticity. Therefore, there is a shear
boundary layer of thickness � close to the side walls where
friction and viscous stresses balance.

In such boundary layers, since � � r, the axial varia-
tion of the vorticity is negligible compared to its angular
variation, and (A.5) simplifies into

1
r2

∂2ω

∂θ2
− ω

�2
= 0,

where r can be treated as a constant. Hence, the vorticity
has an exponential profile: ω = ∓ω0e−r(α0∓θ)/� close to
the side wall θ = ±α0, which matches the irrotational
flow (A.6) as r(α0 ∓ θ)/� � 1. Hence, the vorticity profile
equals

ω = ω0[−e−r(α0−θ)/�+e−r(α0+θ)/�]=−2ω0e−rα0/� sinh
rθ

�
.

Similar to the Laplacian term, the general relation be-
tween the vorticity and the velocity

ω =
1
r

[
∂

∂r
(rvθ) −

∂vr

∂θ

]

simplifies to ω = − 1
r

∂vr

∂θ , hence vr = v0 + 2�ω0e−rα0/� ×
cosh(rθ/�). Inserting this expression in the boundary con-
dition (A.3) yields a first relation between the two un-
knowns ω0 and v0: ω0 = −hv0/(2�2 + �h). The second
relation comes from the conservation of flow rate (A.4).
Finally, the velocity field is

vr =
−Q/h

2rα0 − 2h�/(h + 2�)

(
1 − 2h

h + 2�
e−rα0/� cosh

rθ

�

)
,

which strictly speaking is valid only if �/r � 1, and up to
corrections of order �/r.
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Using this equation, it is straightforward to show that

vr(r, θ = α0)
vr(r, θ = 0)

=
h + 2� − h(1 + e−2rα0/�)

h + 2� − 2he−rα0/�
,

and that:

d
dr

[
vr(r, θ = α0)
vr(r, θ = 0)

]
= −2α0h

�

erα0/�

[(h + 2�)erα0/� − 2h]2

×(1 − e−rα0/�)(2� − he−rα0/�),

which is negative for all values of r > 0 if 2� > h. If
2� < h, this derivative is negative if e−rα0/� < 2�/h,
i.e. r > − �

α0
ln 2�

h . The latter quantity does not exceed
0.368h/2α0 = 0.8mm (the factor 0.368 is the opposite of
the minimum value taken by the function x ln x for x be-
tween 0 and 1). Hence, over our experimental range of r,
the velocity profile (3) implies that vr(r, θ = α0)/vr(r, θ =
0) is a decreasing function of r.
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O. Pitois, F. Rouyer, A. Saint-Jalmes, Foams, Structure
and Dynamics, edited by S.J. Cox (Oxford University
Press, 2013).

2. G.K. Batchelor, J. Fluid Mech. 41, 545 (1970).
3. C. Raufaste, B. Dollet, K. Mader, S. Santucci, R. Mokso,

EPL 111, 38004 (2015).
4. Y. Wang, K. Krishan, M. Dennin, Phys. Rev. E 73, 031401

(2006).
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