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Abstract. The dispersion characteristics of the axisymmetric transverse magnetic (TM) modes of a semi-
circularly corrugated periodic metallic slow wave structure (SCCSWS) have been analysed numerically
by approximating the axial profile of the SWS using Fourier series. The theoretical results and some of
their representative experimental counterpart revealed that, instead of using complex boundary conditions,
the Fourier approximation of the axial profile can be used in deriving the dispersion relation using linear
Rayleigh-Fourier (R-F) theory. An analytical equation has been derived in order to determine the Fourier
constants of the approximated axial profile. Numerical technique has also been employed to calculate
the Fourier constants. The dispersion relation for the SCCSWS is analysed for the cold structure which
is characterized by the real value of frequency and wavenumber. The dispersion characteristics of the
fundamental as well as higher order TM modes have been calculated using Fourier constants obtained by
both analytical and numerical techniques. The SCCSWS analysed in this paper can be implemented in
real experiments for the generation of high-power microwaves.

1 Introduction

Backward wave oscillators (BWO) are high power mi-
crowave devices which are designed to transform the elec-
tron beam energy into electromagnetic radiation at mi-
crowave frequencies [1,2] of the electromagnetic spectrum.
An O-type BWO comprises of an axially propagating elec-
tron beam through a resonant cavity consisting some kind
of slow wave structure (SWS) bounded by a strong mag-
netic field. Metallic cylinders with periodically corrugated
inner wall are being extensively used as SWSs in BWOs.
The SWSs are designed to slow down the electromagnetic
wave with phase velocities less than the speed of light so
that it can resonantly interact with the electron beam.
This resonant interaction leads to an instability which is
the prerequisite of energy transfer from the electron beam
to the electromagnetic wave. The BWO has been named so
because it operates in the negative group velocity regime
and periodic SWSs are necessary for obtaining negative
group velocity [3,4].

During the earlier days of development of the BWOs,
dielectric loaded periodic structures were used as the
SWS. However, this kind of structure cannot support high
power because of the problem of dielectric breakdown.
Use of intense relativistic electron beam generates a very
high electric field inside the structure which causes this
breakdown. In order to get rid of this alarming prob-
lem metallic hollow waveguides with periodically corru-
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gated inner walls are now being used as the SWS [5–10].
Among different corrugation profiles the sinusoidally cor-
rugated SWS (SCSWS) has achieved the greatest atten-
tion of the researchers [11–17]. Although the SCSWS has
some advantages, it is difficult to fabricate a sinusoidal
profile in the inner wall of a metallic waveguide. Many re-
searchers have reported some viable alternative periodic
profiles such as trapezoidal corrugation [6,18], rectangular
corrugation [7,19], doubly rippled inner wall [20], etc. In
this paper, we propose a semi-circularly corrugated SWS
(SCCSWS) as a substitute of the SCSWS. The axial pro-
file of the SCCSWS has been approximated using Fourier
series which allows the use of simple R-F theory for the
analysis of the cold structure dispersion characteristics
which have only real roots for eigen modes. This method
has already been applied successfully both numerically [6]
and experimentally [18].

The Fourier constants of the approximated axial profile
have been determined using both analytical and numerical
approach. The TM01-TM04 modes have been determined
using the obtained Fourier constants and compared. Con-
vergence tests have been performed to ensure the accu-
racy of the obtained results. We have also determined the
fundamental and higher order TM modes by varying the
periodicity of the SCCSWS. To the best of our knowl-
edge, this is the first time one has analysed the beam free
dispersion characteristics of the SCCSWS so rigorously.

The organization of the paper is as follows: Section 2
depicts the mathematical summary of the derivation of
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Fig. 1. (a) Axial profile of the axisymmetric SCCSWS. Black solid line indicates the ideal semi-circular profile, green dashed
line indicates the fitted profile using Fourier constants obtained utilizing numerical technique and red dashed line indicates
the axial profile drawn using Fourier constants obtained using the derived equation. (b) Magnified profile for one semi-circle.
(c) Axial profile for different duty ratios (a/b).

Table 1. Fourier approximation of the SCCSWS using analytical and numerical techniques.

Type of SWS R(z)
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equation
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π
}
− π

4

]

Semi-circular R(z) = R0 +
∞∑

υ=1

Aυ cos(υk0z) + Bυ sin(υk0z), A and B constants are obtained numerically

the dispersion relation, numerical results are presented
in Section 3 and Section 4 presents the discussion and
conclusion.

2 Mathematical modeling

A representative section of the proposed SCCSWS is given
in Figure 1a and it has been magnified for one semi-circle
in Figure 1b. We have determined the dispersion charac-
teristics for different values of the ratio (a/b) of the axial
profile. Figure 1c depicts the axial profile for different pe-
riodic ratio of the SCCSWS. We have chosen the size pa-

rameters of the SCCSWS such that it operates in X-band
frequency range.

The axial variation of the radial function R(z) makes
the structure periodic. For SWS with simpler corrugation
such as, rectangular, triangular or trapezoidal, R(z) can
be determined easily. However, for the SCCSWS, it is
difficult to obtain Fourier constants analytically. In this
case, numerical techniques are used to find the Fourier
constants. We have also derived an analytical equation to
represent the axial profile in terms of the Fourier series.
Table 1 depicts both analytical and numerical Fourier ex-
pression of R(z) for the SCCSWS, where, R0 is the average
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radius, h is the corrugation amplitude, k0 = 2π/z0 and
z0 is the period of corrugation, J1 is the first order Bessel
function of the first kind and the integer v is the harmonic
number.

In case of cold structure the EM field components of
the TM modes of the structure can be expressed by an
infinite sum of the Floquet harmonics as:

Ez(r, z, t) =
∞∑

n=−∞
Ezn(r)ei(kznz−ωt) (1)

where, kzn = kz +nK0 an n = 0,±1,±2, . . . is the Floquet
harmonic number and kz is the axial wavenumber.

Transverse variation of Ezn can be obtained using,

1
r

d

dr

(
r
dEzn

dr

)
+ β2

nEzn = 0 (2)

where, β2
n = (ω/c)2 − k2

zn is the square of transverse
wavenumber, c is the velocity of light in vacuum and the
general solution of (2) can be written as,

Ezn(r) = AnJ0(βnr) (3)

where J0 is the 0th order Bessel’s function of the first kind.
The transverse electric field component is given by:

Ern =
ikzn

β2
n

dEzn

dr
(4)

where n is the Floquet harmonic number.
The tangential field components of the electric field

to the inner wall of the SWS must vanish if we assume
that the inner wall is a perfect conductor. Each spatial
harmonics of the fields inside the SWS will satisfy the
boundary condition. The vector tangent to the inner wall
of the SWS is �t = �r dr(z)

dz + �z, so the boundary condition
can be expressed as [4,5],

Et ∝
∣
∣
∣
∣
∣
Ez +

∞∑

n=−∞

ikzn

β2
n

dEzn

dr

dR(z)
dz

∣
∣
∣
∣
∣
r=R(z)

= 0. (5)

By multiplying (5) with exp(−imK0z) and integrating it
over one period of the SWS (z = − z0

2 to z = z0
2 ) the

dispersion relation can be obtained. This operation is es-
sentially equivalent to expanding each term in the sum
of (5) in a spatial Fourier series.

∞∑

m,n=−∞
An

z2
2∫

− z2
2

ei(n−m)K0z

(
1 +

ikzn

β2
n

d

dz

)

× [J0(βnr)] dz = 0 (6)

at r = R(z).
Equation (6) can be expressed in a concise form as:

∞∑

m,n=−∞
An [1 + (m − n)Qn]P J

mn =
∞∑

m,n=−∞
DmnAn = 0

(7)

Table 2. The size parameters of the SCCSWS.

Parameter R0 (cm) z0 (cm) K0 (cm−1)
SCCSWS 1.50 1.67 3.76

where

Qn =
K0kzn

β2
n

, Dmn = [1 + (m − n)Qn]
(
P J

mn

)
,

P J
mn =

π∫

0

cos [(n − m)u] J0 (βnR(z)) du and u = K0z.

In equation (7) An is a column matrix represents the am-
plitude of Floquet harmonics. The dispersion relation re-
sults from the fact that in the solution of (7), at least some
An �= 0. This implies that

det

[ ∞∑

m.n=−∞
Dmn

]

= 0. (8)

Equation (8) is the required generalized bream free dis-
persion relation for the corrugated SWS. Different axial
profile can be studied using this relation by choosing the
required expression for R(z) in the integration. The de-
terminant Dmn is a function of f and k. Though the rank
of the determinant is infinite, we must truncate it to a
finite value for practical application. If we consider that
the number of Floquet harmonics n(=N) is equal to the
number of Fourier harmonics m(=N), then n and m in
Dmn are bounded to − (N−1)

2 � n, m � (N−1)
2 if we as-

sume that the number of Floquet harmonics equals the
number of Fourier harmonics. Thus we obtain a rank of
2N for the determinant. A trade-off is made on the value
of N to obtain converged dispersion characteristics.

Table 2 depicts the chosen structure size parame-
ters for operation in the X-band. We have used Gauss’
quadrature integration formula to determine P J

mn and the
Newton-Raphson method to solve the determinant Dmn.
Results are presented in the subsequent sections.

3 Numerical results

The Fourier constants of the Fourier series approximated
axial profile of the proposed SCCSWS have been deter-
mined using both analytical and numerical techniques.
We have also varied the period of the corrugation in the
SCCSWS and obtained the Fourier constants for those
cases utilizing numerical technique. The axial profiles of
the SCCSWS for different values of ratio a/b are presented
in Figure 1c. The goodness of the Fourier coefficients ob-
tained using numerical method has been tested utilizing
different statistical indices such as sum of squared errors
of prediction (SSE), R-square, root mean squared error
(RMSE) and adjusted R-square and presented in Table 3.
This has been done in order to ensure the accuracy of our
obtained results.
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Table 3. Goodness of the Fourier fit using numerically obtained Fourier constants.

No. of Fourier
a/b SSE R-square RMSE

Adjusted
harmonics R-square

8 1 0.1436 0.9962 0.01100 0.9961
8 2 0.2057 0.9967 0.01319 0.9967
8 3 0.2507 0.9965 0.01456 0.9965
8 4 0.2158 0.9971 0.01351 0.9971
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Fig. 2. (a) Fundamental and higher order TM modes of SCCSWS for two periods. The size parameters are given in Table 2.
(b) Test of convergence of oscillation frequency for different Fourier harmonic number for SCCSWS.

3.1 Dispersion curve of fundamental and higher order
TM modes for zero beam current

In order to validate the numerically calculated dispersion
characteristics of the TM modes, the convergence of the
obtained results have been tested first by several methods.
The first method used to determine the convergence is
by testing the periodicity f(kz + nK0) = f(kz) of the
dispersion diagram in f -k plane. We have determined the
dispersion diagrams for TM01-TM04 modes for k = 2 ×
3.76 cm−1 and the curves are depicted in Figure 2a. The
periodicity is perfectly maintained over the 2 periods for
all four TM modes.

Though the Fourier series contains infinite number of
harmonics, we need to truncate it to a practically feasi-
ble finite number. We found that eight harmonics provide
reasonably accurate results for our case. Figure 2b de-
picts the frequency for different Fourier harmonics num-
ber taken at k = 0.94 cm−1 and k = 1.88 cm−1 for our
proposed SCCSWS. It can be observed that for 6, 7 and 8
Fourier harmonics the frequency at those two particular
wavenumbers is almost constant. Thus it is evident that
taking eight Fourier harmonics is enough for the results
to be accurate.

The O-type Cherenkov devices such as BWOs operate
at a frequency and wavenumber which can be roughly es-
timated from the intersecting points of the beam lines and
the dispersion curve. It is important to understand the dis-
persion properties of the SWS in order to approximate the
operating frequency of the BWO before real experiment.

Hence we begin by investigating the dispersion relation of
the SCCSWS for the cold structure. In O-type Cherenkov
devices two key parameters of the SWS play predominant
role in determining the frequency, which are mean radius
of the SWS structure, r0 and the period of variation of
the inner wall radius, z0. In case of zero beam current, the
dispersion relation of the cold SCCSWS is exact and the
structure can be assumed to be infinitely long.

Figure 3a depicts the dispersion curve for TM01 mode
along with the light line and the beam lines for different
beam energies. The dispersion curve has been determined
by the R-F method using the numerically obtained Fourier
constants. As it has been already mentioned that we can
approximate the expected oscillation frequency from the
intersection of dispersion curve and beam lines, we have
determined the frequencies at the intersecting points and
presented them in Table 4. As the value of β is decreased,
the beam line shifts to right and the oscillation frequency
decreases. The beam space charge wave can interact with
any of the TM modes of the structure in case of real exper-
iments if other conditions are met. We have compared the
dispersion curves for the fundamental and the higher order
TM modes calculated using both numerically and analyt-
ically obtained Fourier constants which are presented in
Figure 3b. A very good agreement can be observed for the
fundamental TM mode; however, the difference between
the dispersion curves becomes more prominent as we go
for higher order modes. This can be explained from the
fact that the axial profile achieved using Fourier constants
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Fig. 3. (a) TM01 mode dispersion curves for SCCSWS with light line and beam lines for different beam energy. (b) Comparison
of the fundamental and higher order TM modes obtained for Fourier approximation done using equation and numerical technique
for SCCSWS. (c) The group velocities for the four TM modes.

Table 4. Resonant frequency and group velocity of the axial TM01 mode of SCCSWS for different beam energy.

Vb (KV) γ β f (GHz) Wavenumber (cm−1) vg (cm/ns)
Light line 9.697 2.031 –5.70

600 2.1742 0.8879 9.407 2.219 –10.06
500 1.9785 0.8629 9.375 2.275 –10.86
400 1.7828 0.8279 9.217 2.351 –11.63
300 1.5871 0.7765 9.064 2.445 –12.18

obtained with analytical and numerical approach does not
coincide perfectly as presented in Figure 1b.

The speed of the axial energy transport by the struc-
ture modes is determined by group velocity, vg which
is calculated by taking the derivative of the dispersion
equation:

vg =
dω

dk
. (9)

The group velocities for the first four TM modes have been
determined and depicted in Figure 3c. The corresponding
wavenumbers of the intersecting points of the light line
and the beam lines and the dispersion curve of TM01 mode
is calculated from Figure 3a. When we observe the group
velocities at those wavenumbers, we find that they repre-
sent the negative group velocity region which corresponds

to the operating regime of an O-type BWO. The group
velocities at those wavenumbers are presented in Table 4.

3.2 Dispersion curves for different values
of the ratio a/b

Dispersion curves of fundamental and higher order TM
modes for different values of the ratio a/b are depicted in
Figures 4a–4c. The light line and the beam lines are also
drawn for TM01 mode. As we decrease the periodic ratio
(a/b), the SCCSWS gets the shape of a smooth cylin-
drical waveguide and the cut-off frequency increases for
TM01 mode. Thus we can infer that the TM01 mode cut-
off frequency can be tuned by varying the periodic ratio
and is inversely proportional to it. This is consistent with
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Fig. 4. Dispersion curves for various values of a/b ratio (a) TM01 mode with light line and beam lines. (b) TM02 mode. (c) TM03

mode.

Table 5. Resonant frequency of the axial TM01 mode of SCCSWS for different periodic ratio and beam energy.

Vb (KV) β
f (GHz)

a/b = 1 a/b = 2 a/b = 3 a/b = 4
Light line 9.675 9.42 9.045 9.039

600 0.8879 9.404 9.245 8.946 8.941
300 0.7765 9.300 9.170 8.894 8.891

the theory since we know that the period of variation of
the axial profile, z0 is one the key factors that influence
the dispersion relation. The frequencies at the intersect-
ing points of light line and beam lines with the dispersion
curves for different periodic ratios are presented in Table 5.
High-frequency operation of the device could be possible
for the same beam energy for smaller values of the pe-
riodic ratio. The variation of dispersion curves for TM02

and TM03 modes with the variation of periodic ratios are
depicted in Figures 4b and 4c.

4 Discussion and conclusion

The zero beam current dispersion properties of a novel
X-band SCCSWS is studied and presented. Our treatment

has included both analytical and numerical approach for
the determination of the Fourier constants of the axial
profile. The dispersion properties of the proposed axially
varying SWS have been determined using the R-F method.
The dispersion relation of a cold SWS permits only real
values of ω when solved as a function of real k. The re-
sulting linear dispersion relations allow us to approximate
the oscillation frequency of the device qualitatively as a
function of the axial wavenumber. An essential agreement
has been observed between the dispersion curves calcu-
lated using analytically and numerically obtained Fourier
constants. It can be concluded that the proposed novel
SCCSWS can be deployed in real BWO experiments as
a viable alternative of other types of SWS such as sinu-
soidally corrugated SWS which is very difficult to be con-
structed precisely [21].
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Appendix

Table A.1. Numerically obtained Fourier constants for different values of the ratio a/b (As and Bs are in cm).

a/b = 1 a/b = 2 a/b = 3 a/b = 4
A0 = 1.545
A1 = 0.2366

B1 = −0.0007977
A2 = −0.05966
B2 = 0.0004029
A3 = −0.03903
B3 = 0.0003945
A4 = 0.02231

B4 = −0.0003016
A5 = 0.0175

B5 = −0.0002945
A6 = −0.01239
B6 = 0.0002515
A7 = −0.01037
B7 = 0.0002442
A8 = 0.00814

B8 = −0.0002204
K0 = 3.760 cm−1

A0 = 1.419
A1 = 0.3161

B1 = −0.0003379
A2 = 0.03577

B2 = −7.621E-05
A3 = −0.04047
B3 = 0.00013

A4 = −0.03725
B4 = 0.0001591
A5 = −0.006997
B5 = 3.695E-05

A6 = 0.015
B6 = −9.658E-05

A7 = 0.0158
B7 = −0.0001181

A8 = 0.002898
B8 = −2.431E-05
K0 = 3.762 cm−1

A0 = 1.342
A1 = 0.3318

B1 = −0.001288
A2 = 0.08695

B2 = −0.0006743
A3 = 0.00176

B3 = −1.902E-05
A4 = −0.02864
B4 = 0.000446
A5 = −0.02915
B5 = 0.0005658
A6 = −0.01528
B6 = 0.0003547
A7 = 0.0006623

B7 = −2.006E-05
A8 = 0.01069

B8 = −0.0003334
K0 = 3.761 cm−1

A0 = 1.293
A1 = 0.3306

B1 = −0.0001186
A2 = 0.1091

B2 = −7.825E-05
A3 = 0.03028

B3 = −3.246E-05
A4 = −0.006919
B4 = 1.011E-05
A5 = −0.02177
B5 = 3.921E-05
A6 = −0.02262
B6 = 4.874E-05
A7 = −0.01554
B7 = 3.893E-05
A8 = −0.005653
B8 = 1.604E-05

K0 = 3.762 cm−1
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