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Abstract. In this work we demonstrate, that in Casimir actuated nanodevices, geometry and charge carriers
concentration change the stability and the pull-in conditions that cause stiction. The stability is analyzed
by calculating the bifurcation diagram of the capacitive switch as a function of plate thickness for Au and
Si showing that previous calculations based on Lifshitz formula for half-spaces underestimated the stability
conditions. Taking into account the size effect, we recalculate the bifurcation diagram for different metals
and for Si with different carrier concentrations showing the change in the stability conditions.

1 Introduction

Casimir [1] predicted that two neutral parallel plates made
of perfect conductors will attract each other with a force
that depends only on fundamental constants and varies
as the inverse fourth power of their separation. Lifshitz
and collaborators [2,3], showed that for real materials the
force will depend on the dielectric properties of the plates.
The Casimir force has been measured with high precision
using a variety of techniques such as atomic force mi-
croscopy, torsional balances and microelectromechanical
systems [4–13].

The stability of micro and nano electromechanical de-
vices (MEMS and NEMS) is influenced by the Casimir
force as shown by Serry et al. [14] and Buks and
Roukes [15], causing stiction, that renders these devices
useless [16]. The role of Casimir and van der Waals forces
in the stiction and actuation of MEMS and NEMS has
been studied by several authors [17–25]. The Casimir
interaction and stability in MEMS and NEMS can be
further complicated by the presence of surface rough-
ness [24,26–28]. Additionally, even with well grounded de-
vices, residual potentials or patch potentials can add ad-
ditional parasitic forces. This has been an important issue
in the interpretation of Casimir force experiments [29,30].

To avoid the unwanted stiction effect due to the
Casimir force, several schemes have been proposed such as
the use of curved surfaces, materials with very low dielec-
tric functions (aerogels) [31], application of external mag-
netic fields in semiconductors that can support magneto
plasmons [32] and the use of topological insulators [33].
The possibility of using a non-monotonic change in the
force, from attractive to repulsive, to inhibit stiction was
proposed by Bostrom et al. [34].

The studies on the influence of the Casimir force in
MEMS and NEMS usually assumes semi-infinite plates
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rather than more realistic finite thickness ones. This is
accurate for metallic plates with a thickness larger than
their plasma wavelength. However, for smaller plates, the
thickness plays an important role in the calculation of
the van der Waals and Casimir forces. Pirozhenko and
Lambrecht [35] calculated the influence of slab thickness
in the Casimir force between thin silicon plates with differ-
ent concentration of carriers. A similar study was done for
thin films grown by sputtering that exhibit an insulator-
metallic transition as the thickness increases [36]. The cor-
rection to the Casimir force between films of a few atomic
layers was recently calculated by Bostrom et al. [37], even
down to one atomic layer deposits. Another effect rele-
vant for thin layers is the nonlocal behavior (spatial dis-
persion) of the dielectric function. However, as shown in
reference [38] the difference in the Casimir force between
the local and nonlocal calculation is of a few tenths of a
percent.

In this paper we present a theoretical calculation of the
influence of plate thickness in micro and nano mechan-
ical systems actuated by dispersive forces. In particular
we show that the stability conditions have been overes-
timated and that the plate thickness can be used as an
additional design parameter. Also we consider the role of
the plasma frequency in the stability conditions using dif-
ferent metals and doped Si with varying charge carrier
concentrations. Without loss of generality, in this work
we focus only on the Casimir force and do not consider
other forces of electrostatic origin.

2 Casimir force between finite thickness
plates

The Casimir force between two parallel plates of thick-
ness D, local dielectric function ε, surface area S and
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Fig. 1. Force between two Au plates normalized to the force
between semi-infinite plates F/Fi as a function of the separa-
tion a of the plates and their thickness D. As expected, when
the plate thickness approaches the plasma wavelength of Au,
F/Fi → 1.

separation a is given by [2,3]:

F (a) =
∑

p=⊥,||

�S

2π2

∫ ∞

0

∫ ∞

0

kf(ω, k)QdQdω, (1)

where the sum is over the two light polarizations (parallel
and perpendicular) and

f(ω, k) =
r2
p

e2ka − r2
p

. (2)

The wave vector component perpendicular to the plates
is k =

√
(ω/c)2 + Q2, and Q is the wave vector along the

plates. The reflectivities rp are those of the finite width
plates, and are given by [35]:

rp = rpF
1 − e−2δ

1 − rpF e−2δ
, (3)

where δ = D
√

ω2

c2 (ε(iω) − 1) + k2 and rpF are the Fresnel
coefficients.

The frequency integral in equation (1) is done along
the imaginary axis iω, thus the dielectric functions be-
come ε(ω) → ε(iω). The Casimir force given by equa-
tion (1) does not include temperature effects that only
become relevant at large separations. With the separation
range considered in this paper, the difference in the force
is of a few percent.

The effect of the plate thickness on the force is shown
in Figure 1 for two plates of Au and in Figure 2 for plates
made of intrinsic Si. In both figures we plot the force cal-
culated for plates of thickness D divided by the force for
half-spaces (D → ∞) as a function of plate separation.
For a thickness of D = 100 nm we observe that the Au
plate can be regarded as a half-space and in the case of Si
the force is much smaller than for the half-space.

Fig. 2. Force between two Si plates normalized to the force be-
tween semi-infinite plates F/Fi as a function of the separation
a of the plates and their thickness D.

For ease of calculation we use an analytic expression
for the dielectric function of Au that fits the experimental
data well into the frequency range of the inter-band transi-
tions [39,40]. Alternatively one can use directly the exper-
imental dielectric function of Au as reported by Palik [41].
In both cases, the dielectric function is given for bulk
materials and the finite size effect of the system has to
be quantified. For a plate of thickness D, the measured
dielectric functions εbulk have to be modified as [42]:

ε(ω) = εbulk +
ω2

p

ω2 + iωγ0
− ω2

p

ω2 + iω(γ0 + vf/D)
, (4)

where ωp is the plasma frequency, γ0 is the damping factor
and vf is the Fermi velocity of Au. In the damping the
finite size effects come into play. For this reason, we use
the Drude model to extrapolate the dielectric function to
low frequencies (for a discussion on the issues of using
the Drude or the Plasma model at low frequencies when
calculating the Casimir force, see Refs. [29,43,44]). The
finite size correction is relevant at small frequencies as
shown in Figure 3, where we plot the real and imaginary
part of the dielectric function of Au for different plate
thickness. The experimental data from Palik [41] is plotted
with the finite size correction included.

For intrinsic Si the Lorentz model is used [35,45–48],
which is approximated by

ε(ω) = ε∞ +
ω0(εst − ε∞)

ω2
0 − ω2 − iγω

, (5)

where ω0 is a resonant frequency associated to atomic
transitions, ε∞ is the high frequency limit of the dielectric
constant, and εst = ε(ω = 0) is the static dielectric con-
stant. The parameters for Si, as determined from known
data are εst = 11.68, ε∞ = 1, γ = 9.859 × 1012 s−1 and
ω0 = 5.02 × 1015 s−1 [45].
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Fig. 3. Real and imaginary part of the dielectric function of Au
including finite size corrections for different values of the plate
thickness D. For small frequencies the effect becomes more
relevant. Again, for values of D close to the plasma wavelength
the dielectric function of the plates is that of the bulk values.

3 The model system

We consider a simple lumped system modeled by a ca-
pacitive switch. The switch consists of two parallel plates,
one fixed and one attached to a linear spring of constant
κ and rest position L. The equation of motion for the
moving plate is:

m
d2z

dt2
= κ(L − z) − FC(z), (6)

where m is the mass of the plate and z(t) is the separation
between the plates.

Making the change of variables y = 2kz, Q̄ = 2zQ,
D̄ = D/z and introducing the characteristic frequency
ω̄ = 2zω/c, the Casimir force (Eq. (1)) can be conveniently
written as:

FC(z) =
�cπ2S

240z4

(
240
32π2

) ∫ ∞

0

Q̄dQ̄

∫ ∞

0

dω̄yf(ω̄, y),

=
�cπ2S

240z4
η(ε(ω̄), D̄) = F0η(ε(ω̄), D̄), (7)

where F0 = �cπ2S/240z4 is the Casimir force for per-
fect conductors and the function η(ε(ω̄), D̄) has the infor-
mation on the dielectric properties of the plate and their
thickness. Clearly if η(ε(ω̄)) → 1 the force between two
perfect conductors is recovered in equation (5).

Fig. 4. Relation between the parameter λ and the equilibrium
points z∗

eq for Au plates of different thicknesses. The points
z∗

eq > z∗
in are stable, where z∗

in is the separation corresponding
to the maximum of the curves.

Following the standard procedure [28,49] we introduce
the dimensionless variables t∗ = t

√
κ/m and z∗ = z/L.

The equation of motion, equation (4), can be written as

d2z∗

dt∗2
= (1 − z∗) − λη(ε(ω̄), D̄)

z∗4
, (8)

where

λ =
1

κL

�cπ2S

240L4
, (9)

is the bifurcation parameter that relates the Casimir force
(for ideal conductors) at maximum separation with the
maximum elastic force (when the plates are in contact).
This particular choice of the bifurcation parameter allows
us to compare with the ideal conductor case. For large
values of the spring constant, the elastic force dominates
and periodic solutions of equation (6) are expected. Oth-
erwise, the Casimir force will dominate and the plates will
jump to contact. The sets of values for which equilibrium
points exist are obtained by setting equation (6) equal to
zero to obtain:

λ =
(1 − z∗)z∗4

η(ε(ω̄), D̄)
. (10)

3.1 Effect of thickness on the stability

To study the stability of the Casimir actuated MEMS and
NEMS, we plot in Figure 4 the parameter λ as a function
of separation z∗ for Au and Si (Fig. 5) for different val-
ues of the plate thickness D. The maximum values of the
curves occur at a separation z∗in, that is the pull-in sep-
aration. When the separation of the plates is z∗ > z∗in
the solutions are stable, otherwise we have unstable equi-
librium points and the system jumps to contact. In both
figures we see that for smaller values of D, the maximum
value of λ is larger, and for all cases the maximum value
for Au are always smaller than for Si. This is shown in
Figure 6 for the Au and Si plates.
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Fig. 5. Same as Figure 4 but for Si plates. Given that the
Casimir force between the Si plates is smaller, bigger values of
λmax can be obtained.

Fig. 6. The maximum values of λ for Au and Si are plotted as
a function of plate thickness. The smaller the force, the larger
value of λmax that can be achieved, allowing for the use of
softer springs.

The values of λ are related to the spring constant κ as
shown in equation (7). The fact that the maximum val-
ues of λ for Si are larger at a fixed plate thickness than
those of Au, means that given an equilibrium point z∗,
λSi > λAu, thus κSi < κAu. The same is true if we ana-
lyze the Au curves. The thinner the plate the larger the
parameter λ at a given separation, meaning that softer
spring constants can be used in the design of the devices.
For comparison, in Figure 7, we plot the effective stiffness
of the spring at the pull-in position z∗in. As the thick-
ness of the plates decreases, the system becomes less stiff.
The same behavior is observed for both Au and Si. The
stability of the capacitive switch can also be understood
considering that the attractive force between the plates
changes the resonant frequency of the spring. Introducing

0 20 40 60 80 100

0.2

0.4

0.6

width (nm)

κ/κi

Au

Si

Fig. 7. Changes in the effective stiffness of the system at the
pull-in position z∗

in. As the thickness of the plates decreases the
stiffness of the system decreases as well. The same is observed
for both Au and Si. In this figure κi is the stiffness if the plates
were made of a perfect conductors.

a small displacement z′ around an equilibrium point we
have displacement z = zeq + z′. Replacing in the equa-
tion of motion equation (4) and expanding the equation
around z′/zeq � 1 we obtain [50],

m
d2z′

dt2
= −κ

(
1 − 4λη(ε(ω̄), D̄)

z5
eq

)
z′ (11)

= −κeff z′,

where κeff is the effective stiffness. Thus, the resonant fre-
quency is now ωeff =

√
κeff/m. For the stable equilibrium

points zeq > zin the frequency is real and in the region of
unstable equilibrium it becomes purely imaginary.

3.2 Carrier concentration

For different metals we can calculate the stability points
and find the curve of λ vs. z∗. We use a Drude model char-
acterized by the plasma frequency and the damping for
the dielectric function of metals (Fig. 8). The inset shows
λmax for the different values of the plasma frequency. In
this figure the equilibrium position is L = 500 nm.

The dielectric behavior of doped Si plates can be
changed. Ginn et al. [51] recently examined the optical
properties of heavily-doped Si in particular in the long in-
frared wavelength to explore its use as a plasmonic materi-
als. The properties were measured using ellipsometry and
fitted to a Drude like model. In this case, adding charge
carriers by doping Si will change the dielectric function
ε(iω)Si by having an additional Drude-like term due to
the extra carriers [35]. That is:

ε(iω)D = ε(iω)Si +
ω2

p

ω(ω + γ)
, (12)
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Fig. 8. Bifurcation diagram for plates made of different ma-
terials. From top to bottom each curve corresponds to: K, Pt,
Na, Cu, Au, Ag, Al. The inset shows the λmax as a function of
plasma frequency. In the figure and the inset we assume that
the plates have a thickness of d = 60 nm and that L = 500 nm.

Fig. 9. Equilibrium points for plates made of doped Si, for
different dopant concentrations that changes the plasma fre-
quency. As in Figure 8 we assume that the plates have a thick-
ness of d = 60 nm and that L = 5 μm. The carrier concen-
tration (in units of cm−3 ) for the different plasma frequencies
are [35]: N = 1.1 × 1015 (ωp = 0.0021 eV), N = 1.3 × 1018

(ωp = 0.0725 eV), N = 1.4×1019 (ωp = 0.238 eV), N = 1×1020

(ωp = 0.636 eV).

where the carrier concentration N enters in the plasma fre-
quency ω2

p = 4πNe2/m∗, where m∗ is the effective mass.
In Figure 9, we plot λ as a function of z∗ for different
doped Si plates. The case of intrinsic Si coincides with
the curve for ωp = 0.0021 eV (N = 1.1 × 1015 cm−3).
As the carrier concentration increases the sample becomes
“more metallic”, increasing the value of the dielectric func-
tion and thus increasing the Casimir force. In this figure
initial separation of the plates is L = 5 μm. As shown
in reference [35] at large separations between the plates
the difference in the Casimir force for the different carrier
concentrations becomes more relevant.

4 Conclusions

Unlike electrostatic forces, dispersive forces depend on the
thickness of the plates. The usual treatment of the van
der Waals interaction in MEMS and NEMS assumes as
valid the Casimir force for half-spaces. The finite width
of the plates decreases the Casimir interaction, making
the system more stable. Thus, the plate thickness can
be used as a control parameter in the design of devices
where dispersive interactions are important. Furthermore,
by properly choosing the plate width, the spring constant
can be reduced without having a jump-to-contact or pull-
in. Another stability control is the plasma frequency of the
plates. This is more clearly seen for the Si plates where the
dielectric function is changed by doping and changing the
charge carrier density. As the density of carriers increases
a more metallic behavior occurs increasing the magnitude
of the Casimir force, changing the stability conditions. As
shown by Broer et al. [28] the roughness of the plates also
plays an important role in the stability. Thus, roughness,
dielectric properties and plate thickness expand the space
of design parameters to control the stability of MEMS
and particularly NEMS for which dispersive forces become
more relevant.
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Project No. IN105612.
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